emScon 3.0
Programmers Manual
Tracker Programming Interface

®
- when it has to be right @

Geosystems

Programmers Manual

emScon TPI

Metrology Division

Preface

These are original instructions and part of the
product. Keep for future reference and pass on to
subsequent holder/user of product. Read
instructions before setting-up and operating the
hard- and software.

This reference manual contains information
protected by copyright and subject to change
without notice. No part of this reference manual may
be reproduced in any form without prior and written
consent from Leica Geosystems AG.

Leica Geosystems AG shall not be responsible for
technical or editorial errors or omissions.

Product names are trademarks or registered
trademarks of their respective companies.

The software described herein is furnished under
license and non-disclosure agreement, and may be
used only in accordance with the terms of the sales
agreement.

© Leica Geosystems AG
Feedback

Your feedback is important as we strive to improve
the quality of our documentation. We request you to
make specific comments as to where you envisage
scope for improvement. Please use the following E-
Mail address to send in suggestions:

documentation.metrology@leica-geosystems.com

Software and version emScon TPI; V3.0
Manual update May 26, 2008
Manual order number None

Preface

Contact

Leica Geosystems AG
Metrology Division
Moenchmattweg 5

5035 Unterentfelden
Switzerland

Phone ++41 +62 737 67 67
Fax ++41 +62 723 07 34

www.leica-geosystems.com/metrology

1

Contents

1 CONTENTS ... 4
2 INTRODUCTION ..o 8
A R o T =0 []| (T 8
2.1.1 Targeted Users and Terminology.........ccccooeveieneneicncnenenn, 8
2.1.2 Common ADDBIeviationsceceierinienenineee e 8
2.1.3 Supported Leica Hardware...........cccoeveieneninieiicie e 10
2.14 Network reqUIremMentS........cooeeeeierene e 10
2.15 Programming ENVIironmMeNnt............ccccovvvineninncncne e 11
2.2 TCP/IP COMMUNICALIONovviveieiiiieieesieiee e 11
221 SOCKEt FUNCLIONSoviiiieiiecieee e 11
2.3 Tracker Programming Interfacec.ccocooiiiiininciiicnciese, 13
2.3.1 Platform and Programming Language ISSUES...........cc.ceevvne.n. 14
2.3.2 Prefixes and Suffixes used in Type Names...........cc.cceevvvnenn. 15
2.3.3 Asynchronous Communication.........cc.ceeveveveereresesiesesennnns 15
2.3.4 Working ConditionS.........cccevereverenesnseeeeeee e 16
2.3.5 Coordinate Parameter TripletSc..cccoveiveveiercninie s 18
2.3.6 PEISISTENCY .vvevveeieitesiesie ettt 19
2.3.7 Default SEttiNGS......cvcvviveecerce e 19
2.3.8 Application Backward Compatibility.........cccccoevrivnivnivninnnnnnn. 20
2.3.9 SAMPIE COUE ... 23
2.4 Application Initial StEPScooeiiiiriiii e 25
2.4.1 ESSential STEPS......coveiviiiiricicece e 25
2.4.2 Command Sequence for 3D Measurements.............c.ccccevvenne 27
2.4.3 Command Sequence for 6DoF Measurements..............c.ce..... 29
2.4.4 Initial Steps Description in Detailcccccoeeevieniiiiiniininennns 31
2.4.5 Automatic External Device Recognition...........cc.cceeveevirennane. 40
3 C-INTERFACE ..ot 43
3.1 Low-level TPl Programming......cccccccevereninnnsnneseereeneeneseeseeseens 43
3.11 PrecONditiONS.couoiiieiiiirice et 43
3.1.2 Recommendation ..o 43
3.13 Byte AlIGNMENT.......ooiiiiiiec e 44
3.14 Little/Big ENIANSccoiviiiieiiieiieeee s 44
3.15 Preprocessor Statementsccvvvevienienieie e 45
3.1.6 TP1'Boolean’ Data TYPEccovereieerienieeieeeie e 45
3.1.7 Enumeration-Type Members Numerical representation........ 46
3.1.8 Basic C Data Type size of TPI Structures...........cccccceveruenene 46
3.2 CommuUNICAtION BASICS.....ccuiiieiiiiirieisierieiesiesieie st 46
3.2.1 Sending ComMMANGSc.evveireiiireiee e 46
3.2.2 CoMMANA ANSWENSeveeeerieeeieieareerieseeste e sresreeseeseeseeseessessens 47
3.2.3 Error EVENTS ..o 51
3.24 System Status Change EVENScoceevinenenenenecee 51
3.25 3D / 6 DoF — Related commands............ccoeveveveererenesnnnnnnns 52
3.3 C-Language TPl RefErenCe......cccoveiiiiieiiie s 53
3.3.1 CONSLANTS ...t 53

3.3.2 ENUMEration TYPESccviveeieicieiiestese e stese et sresre e 54

3.4 DAta STFUCTUFES ...o.eeiiciieieceetee et 166
34.1 BasiC Data StrUCTUIEScceieiieieieerie e 166
3.4.2 Packet Data StrUCTUIEScoeieriiirerceieeee e 184

3.5 C- Language TPI Programming Instructionscc.cocue... 244
3.5.1 TCP/IP CONNEBCHION ..o 245
3.5.2 Sending ComMMANGScoveviiriiiiireeer s 245
3.5.3 Initialization MACrOSccveveierierieie e 246
3.54 Excurse: C++ Initializationcccooevevvne v 246
3.5.5 Answers from Tracker SErVercoccocviviieierene e 247
3.5.6 Asynchronous Communication............ccoereveneneiesennennen. 247
3.5.7 DataArrived NOtIficationccoceevviviveienene e 247
3.5.8 Data arrival "Traffic Jams'ccccovvvvivviiinieee e 248
3.5.9 PacketHeader Maskingcccocoveviirninineiieice e 249
3.5.10 Command Subtype SWItCh.........ccccceririiiniiiiineic e 249

3.6 CLanguage TPI - SAMPIES......cccoeiiiiiiiiieeceeee e 251
3.6.1 SAMPIE 3. 251

4 C++ INTERFACE ... 255

4.1 Class- based TPl Programming.......cc.ccocooereninienerineneieseneeennens 255
411 PreCONAITIONS.c.vciiieieiiie e 255
412 PIatfOrmM ISSUBScviiveiciiiieeeie ettt 256
4.1.3 TCOP/IP .ttt 256

4.2 C++ Language TPl Reference.......ccccoevvvvivivcenieecese e 256
421 CESAPICOMMAN ClaSS.......ccccvviriiiieiiiiieisesieesesieesees 256
422 CESAPIRECEIVE ClaSSccviviieiiiiiieiiiierieisieisssieese e 258

4.3 C++ Language TPI Programming Instructionscc.cc....... 260
431 SeNAING Data.......cccvverieiiriiiiireeeee s 260
4.3.2 ReCEIVING DAata........ocoriiiiriiiiiieeie e 261
4.3.3 Class DeSIgN ISSUEScurvieiirieiniirieiestenieiesie e 261
434 Data Structure Wrapper Classescccvereenennineienennns 262
435 CESAPICOMMANGooveiiieienisirieiriee e 263
4.3.6 CESAPIRECEIVE ...ttt 265
4.3.7 Queued and Scattered Data.........ccceevveveeiieieiieceeceeseen 266
4.3.8 Partial Settings Changes.........ccoevvieriiiiieieiceesc e 271
4.3.9 Asynchronous Programming ISSUES..........cccocererirererinennn. 272
4.3.10 Working with multiple trackersccccccvinvrinnninenn 276

4.4 C++ Language TPI Samples......ccoooiiiiiiiieiiiiece e 279
44.1 SAMPIE 4. 279
4.4.2 SAMPIE . 283
4.4.3 SAMPIE 12, 283
4.4.4 SAMPIE 19, 285

5 COM - INTERFACE.....ccc e, 286

5.1 High-level TPI Programming..........cccocveininnieniennienencseseeeen, 286
51.1 DraWhacks.......cveviiiieiieieese e 286
512 INErOAUCTION ..ot 286

5.2 COM TPI Programming InStructions..........c.ccccecvvvvvvivnivinnnnnne. 288
521 VisualBasic and VBA Applications..........ccccocevvieiiiinnnnns 288
522 CH+ APPLICALIONS ... 292
523 Notification Method............ccccooiiiiininii e 293
524 Exceptions and RetUrn TYPESccoovrereeieeneenie e 295
525 COM TPI supporting Programming Languages 298
5.2.6 Proper Interface Selection............cooveiiiiiicii i 300
5.2.7 Type- LiDrary ... 302
5.2.8 COM TPI REferenCeccceeveiiiiiie e 303

529 Registering COM ODjJECtS......ccvveeriieeieieicse e se e 304

5.2.10 Synchronous versus Asynchronous Interface.............c........ 304
5.2.11 Visual Basic Boolean variable evaluation..............cc.ccoeuenee. 305
5.2.12 Reading Data Blocks with Visual BasiCcc.cccevevrennne. 306
5.2.13 VBA Macro-Language SUPPOIt........cccovveviieiieesinesnieesnnns 307
5.2.14 Continuous measurements and VBAccccoovvereivnernnnnns 310
5.2.15 Scripting Language SUPPOIt........cccceverereseseeieereenresiesrennns 313
5.2.16 Exception Handling for Non- Microsoft Clients.................. 313
5.2.17 Multi- Tracker Applications..........cccevvvevvnvsiesieeieeiiere e, 314
5.3 COM TPl SAMPIES.....ociiiiiceirciec e 326
53.1 SAMPIE 5. 326
53.2 SAMPIE 7. s 335
53.3 SAMPIE 8. 342
534 SAMPIE L4 e 342
535 SAMPIE 15.. i e 343
5.3.6 SAMPIE 18, e 343
53.7 SAMPIE 20.....iiiiiciiic s 343
6 C# - INTERFACE ..., 345
6.1 Client Programming With C#..........cccooviviiiiiiicie e, 345
6.1.1 INEFOAUCTION ... 345
6.1.2 C# Application Programmingcccccverveeneneinenenneens 345
6.1.3 SAMPIE 16, 346
6.1.4 SAMPIE L7 347
6.1.5 Multi- Tracker C# Applications..........ccocevvervienencienennen, 349
7 BASE USER INTERFACE (BUID)......ccvvvviieeeennn. 354
7.1 Client Programming and BUI..........ccccooiiiiiiiiini s 354
7.1.1 Measurement BUI versus Compensation Applications........ 354
7.1.2 EmScon Basic User Interface (BUI)cccoocevvvvvvvvvnnennn. 355
7.1.3 Integration of BUI into applicationsccccvevvveivevciennns 355
7.14 SAMPIE 131 e 356
8 SELECTED COMMANDS IN DETAIL................. 357
8.1 Special FUNCLIONS. ..ot 357
8.1.1 Get Reflectors Command...........coovevveriiinninieneiseneeseens 357
8.1.2 Still Image CommaNndcccccevevevenesieseee e 361
8.1.3 Live Image diSplay........ccceveveiiniieie e 367
8.14 Orient To Gravity Procedure..........ccooovvveivevieienenese e 374
8.1.5 Transformation ProCedure..........ccoovvevrieneisienieniseseiee e, 375
8.1.6 Automated Intermediate Compensation............c..cceevevvevnennn. 378
8.1.7 Two Face Field-ChecK ... 382
9 MATHEMATICS ... 387
LSS o 101 A To{ot U =T Y 387
9.11 A PrIOFT ACCUIACYivevieieeiieie ettt sttt e 387
9.1.2 A POSEEFIONT ACCUFACY ...vveveenieieesiesie sttt 388
9.13 Transformation of covariance matrices............ccocveervrenene 388
9.2 Orientation and Transformation...........c.ccocevvienerinineisienecennen, 389
9.21 OFENTALION ..o e 389
9.2.2 TransformMation........cc.cooveerenene e 390
9.2.3 Nominal and actual coordinatesS.........cc.ceoevvererevernsnnennne 391
9.24 Orientation Parameters..........covvervrireenereesereese s 391
9.2.5 Transformation parametersccoeeverernienenscc e, 392
9.2.6 Input to transformation computation............cccceeeevrenecnen, 392
9.2.7 Output of transformation computation............cc.cceverenneene. 394
9.2.8 EXAMPIES ...t 396

9.3 T-Probe oo 398
10 APPENDICES ... 400
10.1 Tracker Trigger Interface [A] ...ccccoviiviiciiicie e 400
10.2 Server Error NUmMDers [B] ... 400
10.3 Tracker / TP Error NUMbers [Cl.....ccocoovviniinineiiineeiens 400
10.4 T-Cam / T-Probe Error Numbers [D]cccccevevevvvvvrnnnnnnn, 400
10.5 AIFM Error NUMDbBEers [E] ...coovvvvviviieiiieeiee e 401

2 Introduction

2.1 Prerequisites
2.1.1 Targeted Users and Terminology

This manual applies to software developers who
need to write software that directly
communicates with Leica- Tracker hardware (or
Tracker servers - aka emScon servers,
respectively).

This manual hence describes the Application
Programmers Interface (API) for Leica Trackers /
Tracker Servers (emScon).

APl is a widely used term in the programming
world. In order to clearly distinguish from other
APIs (Win32 API, Winsocket API...) referenced in
this manual, we are rather using the term Tracker
Programming Interface (TPI).

TPI therefore stands as a synonym for Leica
Tracker API throughout this manual.

Note that this is not a User- Manual for trackers!
Users of this Reference Manual need to be
familiar with tracker operation concepts and
tracker-specific terms such as 'Bird bath’,
'Absolute Distance Meter' etc. These terms are
usually not explained here. The Programmers
Manual just means an extension to the provided
User-, Reference- and Training- Manuals for
Leica Trackers and emScon.

2.1.2 Common Abbreviations

IT / Windows / Microsoft specific

API Application
Programmers Interface
ATL Active Template Library

COM

DLL
GUI
IDE

IDL

LAN
LED
OCX
NYI
TCP/IP

Ul
VB
VBA

VC++
VS

Leica/emScon specific
ADM
BB

BUI
CS
DoF

ES

FW
HV

Component Object
Library

Dynamic Link Library
Graphical User Interface

Integrated Development
Environment

Interface Description
Language

Local Area Network
Light Emitting Diode
ActiveX Control

Not yet implemented

Transmission Control
Protocol / Internet
Protocol

User Interface
Visual Basic

Visual Basic for
Applications (a subset of
VB, Macro Language)

Visual C++
Visual Studio (= IDE)

Absolute Distance Meter

BirdBath (sometimes also
BallBar)

Base User Interface
Coordinate System

Degrees of Freedom
(mainly used as 6DoF)

Embedded System (=
server-based system)

Firmware

Horizontal / Vertical
(2DoF angular
measurement pair)

HVD

IFM

LT

LTD /AT
NYI

TPI

TS

TP

Trafo

T-Cam / TCam
T-Probe

T-Mac

V-Cam

WM

Horizontal / Vertical /
Distance (3DoF
measurement triplet)

Interferometer

Laser Tracker (w/o ADM)
Laser Tracker with ADM
Not yet implemented

Tracker Programming
Interface (= API)

Tracker Server
Tracker Processor
Transformation
Tracker Camera
Tracker Probe

Tracker Machine Control
Probe

Video Camera (overview
camera)

Weather Monitor

2.1.3 Supported Leica Hardware

The emScon TPI supports the following Laser

Trackers and T-Products:

e LT500 & LTD500

e LT600 & LTD600 Series

e LTD700 Series

e LT800 & LTDS800 Series

e T-Cam 700 and 800 Series

e AT Tracker Series (AT901-B/MR/LR)
e T-Cam LR and MR Series

2.1.4 Network requirements

Communication between user- applications and

emScon tracker server is based on the TCP/IP

10

protocol. The application PC thus must be
equipped with a TCP/IP-enabled LAN Board.

e This manual does not cover hardware and
network installation/configuration issues.

2.1.5 Programming Environment

This manual (notation, samples) is mainly based
on Microsoft Visual Studio 6.0 (VC++ 6.0, Visual
Basic 6.0). Some samples refer to VisualStudio 7.0
(C# and VB .NET samples).

Compatibility to Microsoft Visual Studio 7.0 (8.0)
is granted for all C/C++/COM interfaces/Samples.
The samples written in VB 6.0 require a
conversion and possibly some minor code-
adjustments in order to compile under VB.NET.

2.2 TCP/IP Communication

Communication through TCP/IP requires
platform specific communication functions. These
are not part of the emScon TPI; they are provided
by the Operating System or by the IDE. There
exist several so-called Socket APIs. Keywords
under Windows/VC++ include Win32 Sockets API,
or (if using MFC) CAsyncSocket and CSocket.
Visual Studio even contains a TCP/IP
communication library, MSWinsck.ocx, as an
ActiveX control (COM object). Any of these
socket interfaces may be used in order to
communicate with emScon.

2.2.1 Socket Functions

For writing emScon applications, only few socket-
functions are required (names may be different,
depending on used Library/API):

e Connect — Establishes a TCP/IP connection
from the application to the Tracker Server.
IP- address/hostname and port number of

11

the Tracker Server are required as
parameters.

SendData — Send a packet of data to the
server, usually by passing a pointer to a byte
array data-block and the size of that block.

ReceiveData — Callback- or Event-
Notification. A mechanism to notify the
application when data has arrived from the
server and is ready to be read.

ReadData - To read waiting data into a byte-
array buffer, upon a notification.

Close — Closes a previously established
TCP/IP connection.

Availability of socket functions:
There are several options. The decision, which
one to use, may depend on several facts: the

platform, the programming language, the type of
the application (Console Application, Windows
Application with GUI, Server Application
running in background...) etc.

Operating system provided low-level socket
API (e.g. Winsock 2.0 API of Windows). This
approach requires some advanced
programming knowledge.

Class libraries, for example MFC, provide a
higher-level abstraction of the Winsock
functions. Easier to use.

ActiveX Controls / COM libraries. For
example MSWINSCK.OCX. Suitable
especially for VB/VBA applications.

Third party TCP/IP communication library
or component.

Self developed TCP/IP library (based on low-
level Win32 API).

12

2.3 Tracker Programming Interface

EmScon provides a TCP/IP interface.
Communicating with the emScon server hence
means sending and receiving byte-array data-
blocks over an (asynchronous) network
connection. This technique has no specific
relation to emScon - it's how any TCP/IP
communication works - including Internet
browsing.

EmScon specific issues are brought into by just
publishing the structure of the sent/received data
packets. The emScon TPI (low-level interface) is
therefore a collection of Data Types, namely
Enumeration Types and Data Structures. That's
all! These data types fully describe the structure
of the data blocks traveling over the TCP/IP
network. They are required to 'construct’ blocks
to be sent to the tracker-server and can be used to
'mask’ incoming data blocks in order to interpret
these.

The definition of these data-types is provided in
C-language notation, as an include-file called
ES_C_API_Def.h. This file is compatible to the
IDL-language, and its types are therefore fully
transparent to COM interfaces (except constants).
(Note the subtle differences between C and C++
notation for structs and enums)

The ES_C_API_Def.h file is the only interface
definition of the emScon TP], also referred to as
the 'native' emScon interface.

All other interface levels (C++ TPI, C# TPI, LT-
Control COM - interface) are higher level
abstractions and are strictly based on this native
include-file. They are, therefore, just provided for
convenience.

This enables the client programmer to design
alternate C++/C# interfaces and/or other high-
level interfaces (e.g. even COM components).
However, the ES_C_API_Def.h file should not

13

be changed on any account.

2.3.1 Platform and Programming Language

Issues

e The versatility of the emScon TPI based on
standard TCP/IP allows its usage on different
operating systems (Windows, Linux, UNIX,
Macintosh...).

e Despite the C-language native interface, the
programming language for writing emScon
applications is not restricted to C. All
languages that can deal with structures in C-
notation (or have the same byte-align policy),
can be used.

The use of languages other than C/C++ may,
however, require translation of C-structures
(ES_C_API_Def.h) to the target language's
notation, with matching structures on the
byte level (4 Byte alignment).

Such translations require some advanced
programming knowledge and are not
covered by this Manual.

e The use of programming languages other
than C/C++ is not recommended for low-
level TPI programming, and no support is
provided.

Translating the TPI's Enumeration Types
and Data Structures into other language's
syntax may encounter potential errors
(different size of basic data types, byte
alignment issues etc.).

e Applications therefore should not be based
directly on the C- native interface. Usage of
provided C++, C# or COM emScon interfaces
is highly recommended instead.

14

2.3.2 Prefixes and Suffixes used in Type
Names

Prefixes

ES 'Embedded System' (or
emScon). They identify
type-names of the TPI

DT Data type (Packet type)

C Command

RS Result Status

SSC System Status Change
(Events)

Suffixes

T Type; usually used for
general sub-structures

RT Return Type (used for
data transfer from server)

CT Command Type (used

for data transfer to
server)

These are only the most frequent ones. Other
prefixes explain themselves as they mostly are
derived from the enum-type- names.

2.3.3 Asynchronous Communication

As for any TCP/IP communication, low-level
communication (C/C++) to the tracker server is
asynchronous. In particular, this means:

e A SendData function will always return
immediately without waiting for an answer.
Depending on the command, several seconds
may expire before the answer arrives
(through a notification or callback).

e Each TPI command causes an
(asynchronous) answer (sort of an
acknowledgment). Hence, commands and
answers usually occur 'pair- wise'. Some
commands, however, will result in more

15

than one result packet.
There is no command at all that does not
respond with an answer of some sort!

e Some Error Event types (for example 'beam
broken') can occur at any time and are not
direct reactions to a command (So called
unsolicited events). An application should be
prepared to 'catch' these at any time.

e There are numerous 'System Change Events'
that can occur at any time. An application
may evaluate these (mainly for GUI update);

e The tracker server high-level interface
(COM) provides both asynchronous and, to a
certain degree, synchronous communication.
However, some answer types are always
asynchronous by their nature, even when
using the synchronous interface.

2.3.4 Working Conditions

The tables below show valid working ranges for
selected parameters.

Level 1

Commands in the specific contexts will return a
warning status when range is outside level 1
limits, but within level 2 limits. (These values are
outside Leica specified working ambient
conditions but are still accepted; nevertheless
they should be used with caution).

Some other values are just for information (for
example height above sea level).

16

Working
ambient
conditions

Temperature

Height above
sea
level/elevation
(not relevant for
software)

Air pressure
Relative
humidity
Refraction index

IFM

Refraction index
ADM

Level 2

Minimum value

+ 5°C

-500 m
600 mbar

10%

1.00015

1.000152

Maximum value

+ 40°C

+3000 m
1170 mbar

90%

1.000331

1.000336

An Error message occurs when trying to set a
value outside the specified range. The values are

rejected.

Storage ambient
conditions
(extended
working range)

Temperature
Height above
sea
level/elevation

(not relevant for
software)

Air pressure
Relative
humidity
Refraction index

IFM

Refraction index
ADM

Minimum value

-10°C

-2000 m
330 mbar

0%

1.000077

1.000078

17

Maximum value

+60°C

+7000 m
1400 mbar

100%

1.000419

1.000425

2.3.5 Coordinate Parameter Triplets

The values of coordinate parameter triplets (often
named as Vall,Val2 and Val3) in most data
structures, depend on the currently active
coordinate system type and the currently active
units.

In addition, measured coordinate values (output)
and positioning values (input) are transformed
according to currently set transformation- and
orientation parameters. Coordinate values for
'filters' (Sphere, Box, Grid) differ from case to
case. Details and exceptions are explained in the
reference section.

The orientation / transformation filters can be
switched off through flags provided by the
system settings. Using the default values for
orientation and transformation parameters'
(0,0,0,0,0,0)/(0,0,0,0,0,0,1) mean invariant
transformations. Switching off these filters
through the appropriate system settings flags
may result in a more performing data-
throughput; apart from this, the values are the
same as if default values were set (while
parameter settings actually are other than

default).

Coordinate Vall Val2 Val3
system type

Cartesian X Y Z
(RHR, LHR)

Spherical H \Y D (=R)
Cylindrical R Phi (=H) Z
XY, Z Cartesian

coordinate values

H Horizontal angle
A% Vertical Angle

D Distance (=Radius)
R Radius

18

PHI Horizontal Angle
(=H)

Different notations of values in different systems
(Phi instead of H, D instead of R) maintain
continuity with previous releases of application
software.

2.3.6 Persistency

The tracker server keeps most settings (such as
Units, CS-type, Reflector type etc.) persistently.
Recent values will be restored on restart of the

Tracker- server.

It is recommended to initially set the required
settings, on every client startup — as good
programming practice. An application should
never rely on certain settings already be done -
another application/user may have changed these
in the meantime!

Some (mainly critical) settings are intentionally
set back to default values upon server reset.

2.3.7 Default Settings

List of the most common parameters and their
default factory- settings:

e Orientation parameters: {0,0,0,0,0,0}

e Transformation parameters: {0,0,0,0,0,0,1}
(scale factor is 1)

e (CS-Type: RHR (right handed rectangular)
e Length: Meter

e Angle: Radian

e Temperature: Celsius

e Pressure: Hecto-pascal = Millibar

e Rel. Humidity: 70%

e Temperature: 20.0°C

e Pressure: 1013.25 mbar (760 mmHg)

19

e Measurement mode: Stationary

e Temperature range: Medium

e Reflector: None

e Interferometer refr. index: 1.0002711152

e ADM refraction index: 1.0002748652

e Stationary point measurement time:2500 ms
e Continuous measurement; time: 500 ms

e Continuous measurement; number of
points: 0 (means infinite)

e Statistic mode: Standard

e Region and grid mode parameters:
Arbitrary.

Other, less- common settings, are described in the
command reference section.

2.3.8 Application Backward Compatibility

New data types/packets with evolving server versions

This is a very important issue in order to prevent
existing application software will break when
used in combination with future emScon server
software upgrades.

Future versions of emScon may provide
new/extended data over the TCP/IP connection,
such as new packet types (new commands), new
status messages and new error messages.
Backward compatibility will be provided, in that
existing packets/information structure are neither
changed nor removed from the TPI definition
(except when explicitly announced), but new one
may be added/appended with new server
versions.

However, applications must be designed in a
way so they ignore any unknown or unexpected
data. In practice, this generally means that default
cases in switch statements should always be

20

treated as neutral' (no action).

Example:

The enum 'ES_SystemStatusChange' in emScon

V1.2 contained only two members:
enum ES_SystemStatusChange

ES_SSC_DistanceSet,

ES_SSC_LaserWarmedUp,
};

EmScon V1.2 had only two system status change
events, as shown above. With emScon version 1.4

(and higher), many more status change events
have been introduced (See C- API def file).

A programming statement in a client application
(originally developed under V1.2) as shown
below, would cause an 'Unexpected Status'
message with V1.4 (and higher) emScon servers
upon any of the new status events; the
application thus would probably fail in
combination with a V1.4 emScon server and

would require code- adjustments.

switch (status)

{
case ES_SSC_DistanceSet:

AfxMessageBox(“ADM Distance re-established”);
break;
case ES_SSC_LaserWarmedUp:
AfxMessageBox(“Laser is now ready’);
break;
default:

AfxMessageBox(“Unexpected Status™);
break; // WRONG!!!

3
Solution:

Ignore the default case by doing no action at all

(or one that just has an effect to debug versions).

default: // No action at all
break;

or
default: // no effect to retail versions
TRACE(“Unexpected Status™);

ASSERT(false);
break;

Summary: emScon client application only must
interpret KNOWN, i.e. defined data according to
enums/structs in current C- API file. All other
data must be ignored.

21

Only if this rule is attended, existing emScon
client applications will also run with future
emScon server upgrades. Otherwise, application
source may need to be adjusted to be compliant
to new server versions.

Applications supporting different server versions

If an application is required to support tracker
hardware with different capability and/or several
emScon server versions, some important version
checking issues apply.

Consider for example that the same application
should be able to deal with emScon V1.5 (3D
only) as well as with emScon V2.0 and up (3D
trackers as well 6DoF systems).

Since newer emScon server versions always are
backward compatible - that is, all previous
commands are also covered by the newer
versions - there is usually no problem to run an
already existing application on a newer server
version (exceptions see previous chapter).

The problem starts for applications that should
support 6DoF systems (emScon server V2.0 and
up), but should also be able to deal with 3D
trackers running on an emScon V1.5 server.

In order to run properly, such an application
should check the server version upon startup and
make provisions to prevent calls not suitable to a
particular server version.

The version info can be queried from the server; it
is part of the information delivered by the
'GetSystemStatus' command (ESVersionNumber).
Depending on this version, the application has to
allow/prevent commands for execution.

If the queried server version for example
evaluates to 1.5, the application would have to
block (for example gray-out menus) all 6DoF
related commands.

See 'enum ES_Command' in file ES_C_Api_def.h
for availability of commands in what version.

22

There are comments such as
// New commands added for release 2.0

2.3.9 Sample Code

The samples/tutorials, which are part of the SDK
and which have to be regarded as integral part of
this manual, show the principles of TPI
programming in terms of ready to compile/use
applications.

However, most sample applications may not be
of real practical use, with respect to the specific
TPI commands they implement. The focus of the
samples is set to show principles of tracker
control.

Initial Steps
In a practical application, in order to get accurate

results, it is crucial to implement all the steps as
listed under 'Initial steps'.

Minimal Code

The number of files and code- overhead in the
samples has been kept to a minimum. Code
generated from wizards, such as recompiled
headers, icon, res2 includes and 'cosmetic functions',
have been stripped off.

See also the numerous comments in the sample
source files and the 'ReadMe.txt' files in each
sample folder.

Error Handling

The samples do not always implement complete
error handling and may need to be run through
the debugger in order to find failure reasons.

Interface Design

The user interface design is kept at a minimum
level (for example, unavailable buttons are not
grayed out). Such items are general issues of

23

Windows programming.

Hard Coded Information

The samples may contain some hard-coded
information (IP address/coordinate values) that
might be adapted to the local environment.

24

2.4 Application Initial Steps

2.4.1 Essential Steps

A client application must carry out all steps listed
below upon startup. Omitting some of these steps
may prevent the tracker from measuring or lead
to inaccurate results. Inaccurate results are
difficult to detect.

Setting correct environment parameters
(temperature, pressure, humidity) or configuring
the system for automatic, environment parameter
reading is crucial.

Most of the Settings ('Set'- commands) remain
persistent. That is, they will be the same after a
system restart. However, it is strongly
recommended that an application always
confirms these settings upon startup. This is
because another application (e.g. emScon Base
User Interface) could have accessed the tracker
server in the meantime and could have changed
the settings.

Note that most of the sample applications are not
complete to this respect — the intention of the
Samples is to show programming principles only.
See also Leica Tracker/Training Manual.

Important: The emScon Compensation
Application (Web Application) sets the system
into a special mode called Compensation Mode.
If this mode is active, all commands will return
with an error status
'ES_RS_InCompensationMode".

In other words: The TPI interface is locked while
a Compensation / Field check is being performed.
A client application, upon startup, should
therefore verify the system is not in compensation
mode. This can be done explicitly by using any

25

'Get...' command: If the command completes with
'ES_RS_AIIOK, the system is NOT in
compensation mode. If the status
'ES_RS_InCompensationMode' is returned, the
application should inform the user and exit.
Checking the compensation mode can also be
done 'implicitly’' by evaluating the status of the
very first command the application sends after
connecting to the server. This can be any 'Set..." or
a 'Get..." command.

26

2.4.2 Command Sequence for 3D
Measurements

3D Measurements are performed to a (currently
selected) Reflector. The selected Measurement
Mode must apply to one of the 3D modes. The
tracker does not require a T-Cam, although there
might be one mounted during 3D measurements.

Steps TPI command

1. Establish TCP/IP Depends on TCP/IP
connection. communication API —
See different samples

2. Setunits (length, ES_C_SetUnits
angle, temperature
and pressure)

3. Set current ES_C_SetEnvironmentla
environmental rams,
temperature, pressure
and humidity

4. Initialize the Laser ES C_Initialize
Tracker

5. Select desired 3D ES_C_SetMeasurementM
Measurement mode ode
(Stationary,
ContinuousTime..)

6. Query all defined ES_C_GetReflectors
Reflectors (optional)

7. Select the Reflector ES_C_SetReflector
being used

27

8. Go Bird Bath ES_C_GoBirdBath
(optional, if Tracker
equipped with an
ADM)
For 6D modes, the
tracker will move to
zero position instead;
GoBirdBath does not
make sense for Probes

9. Set Station ES_C_SetStationOrientati
Orientation onlPParams
parameters

10. SetTransformation ES_C_SetTransformation
parameters Params

11. Set Coordinate ES_C_SetCoordinateSyst
system type (RHR, emType
LHR...)

12.’SendUMessages” ES_C_SetSystemSettings
should always be
enabled.

(boolean in struct
SystemSettingsDataT)

In addition, a valid Mechanical Tracker
Compensation must be active. This is usually
always the case (supposed the Tracker
compensation once has been performed or
imported). However, there can be exceptions
when installing new software or importing
compensation data.

The active compensation is a persistent setting
which can be changed by a ‘SetCompensation’
TPI command (or by selection within the
compensation tree- representation in the
Compensation- application).

See description of 'GetCompensations /
GetCompensation / SetCompensation'.

28

2.4.3 Command Sequence for 6DoF

Measurements

6DoF Measurements are performed to a T-Probe,
which will be recognized automatically by the

system. The selected Measurement Mode must

apply to one of the 6DoF modes. A T-Cam must

be mounted.

Steps

1. Establish TCP/IP
connection.

2. Set units (length,
angle, temperature
and pressure)

3. Set current
environmental
temperature,
pressure and
humidity

4. Initialize the
System

5. Select desired
6DoF Measurement
mode

6. Ensure that 'Keep
Last Position' flag is
enabled

7. Set Station
Orientation
parameters

8. Set Transformation
parameters

TPI command

Depends upon TCP/IP
communication API —
See different samples

ES_C_SetUnits

ES_C_SetEnvironmentPa
rams,

ES_C_Initialize

ES_C_SetMeasurement
Mode

ES_C_SetSystemSettings
OR
ES_C_SetLongSystemPar
ameter

ES_C_SetStationOrientat
ionParams

ES_C_SetTransformation
Params

29

9. Set Coordinate ES_C_SetCoordinateSyst
system type (RHR, emType
LHR...)

10. “SendUMessages” ES_C_SetSystemSettings
should always be
enabled.

(boolean in struct
SystemSettingsDataT)

In addition, apart from a valid Mechanical
Tracker Compensation (see 3D), compensations
must be present and active for TCamToTracker,
Probe and TipToProbe (supposed all these
compensations have once been performed or
imported). Active compensations are persistent
settings that can be changed by the several
‘Set...Compensation” TP commands (or by
selection within the compensation tree-
representation in the Compensation- application).
See description of ‘Get...Compensations /
Get...Compensation / Set...Compensation’.

Selection of TCam and Probe compensation only
mean a 'hint' to the system. The compensations
themselves only become really active if a
matching TCam (i.e. compensation matches the
serial number of TCam) is mounted, respectively
if a matching Probe is connected and recognized
by the camera.

30

2.4.4 Initial Steps Description in Detail

Description of some commands that require more
explanation.

Initialize Laser Tracker

Implication Comment

Initialize encoders and This command has to be

internal components performed every time
you set up a new Leica
Tracker system station. It
is strongly recommended
to use this function 2-3
times a day to initialize
encoders and its internal
components. This is
important due to thermal
expansion of the tracker
hardware, which has a
direct influence on the
measurements

31

Set Current Environmental Parameters

Implication

Calculate and Set index
of refraction

Comment

With the input of the
environmental
temperature, pressure
and humidity, the system
calculates the light
refraction index of the
interferometer (IFM) and
the absolute distance
meter (ADM). These
parameters have a direct
influence on the distance
measurement A change
of 1°C causes a
measurement difference
of 1Ippm.

A change of 3.5mbar
causes a measurement
difference of 1ppm.

Change environmental
parameters when
significant changes take
place.

Default values:
20.0 °C, 1013.3 mbar

32

Set Reflector

Implication

Select a specific reflector

Comment

A wrong reflector results
in a wrong initial IFM
distance, e.g. when using
the Go Birdbath
command. This has a
direct influence on the
distance measurement.

Tooling ball reflector
(TBR) =5.310 mm
Cat eye =59.114 mm

There is usually more
than one reflector
defined. These can be
queried from the system
by using the
'GetReflectors' command.
This shows the relation
between the ID and the
Name (Reflector Type).
The ID can then be
passed to the
'SetReflector' command
to activate it. Note that
this setting remains
persistent. Nevertheless
it's strongly
recommended that an
application upon launch
at least checks whether
the desired Reflector is
set

More info: Chapter 8: 'Get
Reflectors' command

33

Set Compensation
Implication
Select a specific

Mechanical Tracker
Compensation

Comment

More than one
mechanical Tracker
Compensation may be
defined for a tracker
(although often there is
only one).

If there is more than one,
these can be queried from
the system by using the
'GetCompensations'
command. This will show
the relation between the
ID (a number) and the
Name (a Date- String) of
the available
compensation. The ID
can then be passed to the
'SetCompensation'
command in order to
activate it. Note that this
setting remains
persistent. Nevertheless,
it's a good idea that an
application upon launch
at least checks whether
the desired compensation
is set (command
GetCompensation).

The principle of dealing
with compensations is
the same as for
Reflectors. For more
details see chapter 8: 'Get
Reflectors' command

34

Set T- Cam To Tracker Compensation

Implication

Select a specific T- Cam
to Tracker
Compensation. Related to
6DoF modes only.

Comment

More than one T- Cam to
Tracker Compensation
may be defined for a
tracker/ camera (although
often there is only one).

If there are more than
one, these can be queried
from the system by using
the
'GetTCamToTrackerCom
pensations' command.
This will show the
relation between the ID (a
number) and the Name (a
Date- String) of the
available compensation.
The ID can then be
passed to the
'SetTCamToTrackerCom
pensation' command in
order to activate it. Note
that this setting remains
persistent. Nevertheless,
it's a good idea that an
application upon launch
at least checks whether
the desired compensation
is set (command
'GetTCamToTrackerCom
pensation’).

The principle of dealing
with compensations is
the same as for
Reflectors. For more
details see chapter 8: 'Get
Reflectors' command

35

Set Probe Compensation

Implication

Select a specific Probe

Comment

More than one Probe

Compensation. Related to Compensation may be

6DoF modes only.

defined for a tracker/
camera (although often
there is only one).

If there is more than one,
these can be queried from
the system by using the
'GetProbeCompensations'
command. This will show
the relation between the
ID (a number) and the
Name (a Date- String) of
the available
compensation. The ID
can then be passed to the
'SetProbeCompensation’
command in order to
activate it. Note that this
setting remains
persistent. Nevertheless,
it's a good idea that an
application upon launch
at least checks whether
the desired compensation
is set (command
'GetProbeCompensation’)
The principle of dealing
with probe
compensations is the
same as for Reflectors.
For more details see
chapter 8: 'Get Reflectors'
command

36

Keep Last Position Flag

Implication

Makes the laser beam
stay at its current
position if the beam is
broken.

Comment

Enabling this flag is
optional for 3D
measurements (it makes
only sense if the Tracker
is equipped with an
ADM). This flag is
cleared by default. For
6DoF measurements,
enabling this flag is
compulsory to prevent
the laser going to home
position upon a beam
break.

(Automatically re-
measures reference
distance to the Reflector
or T-Probe after the
laser beam has been
lost.)

There are two ways to
control this flag, either
through the command
‘SetSystemSettings’ or
through
‘SetLongSystemParame

4

ter

37

Station Parameters

Implication

The station parameters
describes the translation
and rotation of the
tracker station in a
coordinate system:

X, Y, Z, Omega, Phi,
Kappa

Transformation Parameters

Implication

A transformation
describes a change into
another coordinate
system, which is different
from the tracker
coordinate system. It has
the following parameters:
X, Y, Z, Omega, Phi, and
Kappa and scale factor.

Comment

Orientation parameters
can be determined using
the Transformation
functionality of emScon
(see chapter Points to
points Transformation')
or can be individually set
by the application.

By default, the
orientation parameters
are as follows:
(X=0/Y=0/Z2=0/Omega=0/P
hi=0/Kappa=0).

Comment

Transformation
parameters can be
determined using the
Transformation
functionality of emScon
(see chapter 'Points to
points Transformation')
or can be individually set
by the application.

By default, the
transformation
parameters are as
follows: (X=0/Y=0/2=0/
Omega=0 / Phi=0 /
Kappa=0/ Scale =1.

38

Coordinate System Type

Implication

Selects the coordinate
system type:

RHR/LHR X, LHR Y,
LHR
Z/CCW/CCC/SCW/SCC

Comment

The TPI delivers the data
in the current coordinate
system type. By default
the tracker system will
work in the right handed
rectangular coordinate
system (RHR) type:

3D rectangular
coordinates are defined
by 3 mutually
perpendicular axes X, Y
and Z given in the order
XY, Z).

Since the axes can be
arranged in two different
ways, right and left-
handed systems are
defined according to the
convention illustrated in
a simple 2D case.

Cylindrical Clockwise
(CCW),

Cylindrical Counter
Clockwise (CCQ).

In a cylindrical system,
the X and Y values are
expressed in terms of a
radial (distance) offset
from the Z-axis and a
horizontal angle of
rotation. The Z
coordinate remains the
same.

39

Implication Comment

Spherical Clockwise
(SCW),

Spherical Counter
Clockwise (SCC).

In a spherical system, a
point is located by a
distance and two angles
instead of the 3
coordinate values along
the rectangular axes. For
axes labeled XYZ, with Z
vertical, the point is
located by its distance
from the origin,
horizontal angle in the
XY plane and zenith
angle measured from the
Z-axis.

2.4.5 Automatic External Device Recognition

This is an improved new feature that comes with
emScon version 3.0 (except for systems running
on external emScon servers).

This subject applies to so-called 'external devices'
(Meteo Station, Overview Camera, Inclination
Sensor [Nivel]).

In former versions, it was necessary to explicitly
enable these devices by setting related flags
([hasVideoCamera, hasNivel, weatherMonitorStatus])
on using the 'SetSystemSettings' or
'SetLongSystemParameter' command. See chapter
about struct SystemSettingsDataT for details.

In order to keep backward compatibility, these
commands/flags still exist and will behave in a
way that should not cause any problems to
existing applications, although their behavior has
slightly changed.

Here is a description of the new automatic device
recognition behavior:

40

General Behavior

When the system is initialized any device
that is currently plugged in will be
recognized and set accordingly. If the
operator forgot to plug something in prior
to initializing, he can simply connect it and
re-initialize the system to find the device.

OVC Recognition

During initialization the system will check
to see if an Overview Camera (OVC) is
attached. If yes, then the flag will be set to
true, and communication should start to the
device.

If the operator (application) tries to set the
flag false after the system has set it as true,
then the system should allow it and end
communication to the device, but will reset
the flag and communication correctly on
the next initialization.

If the system sets the flag to false, but the
operator (application) tries to force it to
true, then the system should check to see if
an OVC is attached before it allows the flag
to be set as requested.

Inclination Sensor [Nivel] Recognition
During initialization the system will check
to see if a NIVEL is attached. If yes, then the
flag will be set to true, and communication
should start to the device.

If the operator (application) tries to set the
flag false after the system has set it as true,
then the system should allow it and end
communication to the device, but will reset
the flag and communication correctly on
the next initialization.

If the system sets the flag to false, but the
operator (application) tries to force it to
true, then the system should check to see if

41

a NIVEL is attached before it allows the flag
to be set as requested.

e Meteo Station Recognition
During initialization the system will check
to see if a Meteo Station is attached. If yes,
then the flag will be set to true, and
'Read AndCalculateRefractions' should
start. If the operator (application) wants to
switch to 'ReadOnly' this will have to be
done through the appropriate command.
If the operator tries to set the flag false after
the system has set it as true, then the system
should allow it and end communication to
the device, but will reset the flag and
communication correctly on the next
initialization.
If the system sets the flag to false, but the
operator (application) tries to force it to
true, then the system should check to see if
a Meteo Station is attached before it allows
the flag to be set and
'Read AndCalculateRefractions' to start as
requested.

Note that this automatic device recognition
feature is not supported by external emScon
servers — these still follow the ‘old” behavior.

42

3 C - Interface

3.1 Low-level TPl Programming

3.1.1 Preconditions

Using the C interface requires some particular C-

programming knowledge. A programmer should
at least know about asynchronous programming

concepts, TCP/IP socket programming and multi-
threading.

The description of the enums and structs in this
chapter sometimes may be slightly discrepant to
the contents of the 'ES_C_API_Def.h' file. In such
cases, the information in the 'ES_C_API_Def.h'
file should be regarded as correct.

This chapter completely and exclusively relates to
the file 'ES_C_API_Def.h', which is part of the
EmScon SDK. All Enumeration types and
Structures are described in this header file. This
header file acts as an integral part to this manual
and it might be helpful to have it open in parallel
to this document since the information is much
more condensed there.

3.1.2 Recommendation

Although the C- interface makes up the native
programming- interface to emScon, it is not
usually recommended to write applications
directly using the C- interface.

Rather use the much more convenient C++ (or C#
or COM) interface.

In contrast to the C++ interface, the C-interface
requires much more coding lines and comprises

43

the danger of doing initialization errors for
structures (aka 'copy/paste errors').

However, since it's the native interface, the
enumeration types and structures of the C-
interface serve as main- reference.

The same enumeration types and parameters will
show up - in slightly different contexts with
slightly different terminology - in the other
interfaces as well.

Hence, even when working with the C++-
interface (or C#, COM), looking up information in
this chapter 'C- Interface' might be essential.

3.1.3 Byte Alignment

Data packets have a 4-Byte alignment convention.
The VC++ statement #pragma pack (push, 4), before
user-defined structure definition, uses 4 Byte
alignment — VC++ default is 8 Byte. The statement
#pragma pack (pop) sets the alignment back to the
previous value.

Use only 4 Byte alignments for TPI structures.

These are Microsoft VC++ specific statements.
When using a non-Microsoft compiler, #pragma
pack (push, 4) and pragma pack (pop) may have to
be replaced by appropriate directives.

The following include statement prepares the
C_API_Def.h tile for Byte alignment in Linux/
Win32.

4 Byte alignments for other platforms must be

forced

#ifdef _WIN32

#pragma pack (push, 4)

#elif defined __ linux__

#pragma pack (4)

#elif

#error Insert here directive to ensure 4 Byte alignment for
other platforms (Unix, MAC)

#endif

3.1.4 Little/Big Endians

Non-Intel based workstations, for example
M68000 based workstations like SUN, Apple or

44

IBM RS6000 series, use different endians for
double values. The client application (the TCP/IP
communication interface respectively) requires
appropriate measures to interpret numerical
values correctly.

The Tracker Server is Intel based. All values are
provided in the little endian format.

3.1.5 Preprocessor Statements

The following statements show a common
practice to avoid multiple inclusion of the same
include-file while compiling a .CPP module. In
case of nested inclusion of the ES_C_API_Def.h
file, these statements will prevent warnings for
multiple definitions of data types.

#ifndef ES_C_API_DEF_H
#define ES_C_API_DEF_H

#endif

3.1.6 TPI'Boolean' Data Type

No native Boolean data-type is available in C. C
uses the integer basic type for Boolean values. For
convenience, a platform- independent ES_BOOL
type has been introduced for the ES_API:

typedef 1nt ES BOOL

Neither BOOL (which is 2 Bytes and Microsoft-
specific) nor bool (which is 1 Byte and specific to
newer C++ revisions) has been used. By using a 4
Byte Boolean (= int), pure C compliance and
maximal portability is assured.

This relates only to the C interface,
ES_C_API_Def.h. The C++ interface as well as
custom programs may use any compatible
Boolean type. Boolean type variables used in ES
C API structs must be 4 bytes.

45

3.1.7 Enumeration-Type Members
Numerical representation

Enumeration-type members in C are internally
represented by integer values. Numbers can be
assigned explicitly to particular enum values; this
is the case for all enumeration types defined for
emScon.

This approach has some advantages for
application debugging . However, applications
should never use the numerical values directly.
Always use the according symbol-names.

3.1.8 Basic C Data Type size of TPI Structures

This is relevant for programming languages other
than C/C++. However, some non-standard C/C++
compilers may provide different sizes of basic
data types. For TPI clients, it is necessary to use
the following standard sizes:

Data type Size

Enum values 4 Bytes (= int 32 or long)

Long 4 Bytes

Int 4 Bytes

Short 2 Bytes (for Unicode
strings exclusively)

Double 8 Bytes

ES_BOOL 4 Bytes (= int 32 or long)

3.2 Communication Basics
3.2.1 Sending Commands

The Tracker Server can be controlled only
through commands sent over TCP/IP. Commands
differ in the count of parameters they take.

e GoBirdBath is an example for a non-
parameter taking command.

e PointLaser (x,y,z) takes 3 parameters.
The majority of commands taking parameters are

used for so- called property setting

46

Set<CommandName> commands. The syntax of
each command — whether taking parameters or
not — is defined by its <CommandName>CT
structure.

These structures need to be initialized properly.
Refer to C- Programming instructions section.

3.2.2 Command Answers

Every command causes an asynchronous answer.
At least this is an acknowledgment (for non data-
returning commands).

The command-type (one of the members of the
enum ES_Command) previously sent to the
Tracker Server is echoed back, padded with
information whether the command succeeded or
not, and (optionally) padded with command
specific data. The command type thus can be seen
as 'cookie' to match the received data properly
with the issued command. Depending on the
command type, this echo can occur immediately,
or may take several seconds (for example for
FindReflector or Initialize Tracker).

Generally, a <CommandName>RT structure defines
the contents of a command answer. However,
there are some special cases in the case of
measurements commands.

The command answers can be categorized into
several subtypes as listed below.

Non-data Returning Command Answers

This command answer-type essentially consists of
a command type 'cookie’ with the return status
'succeeded' or 'failed'. In case of failure, the return
status (its numerical representation or enum-
status value) may indicate the reason. Non-data
returning commands all share the same basic
return type structure. Find Reflector is an example
of a non-data returning command.

47

Property-data Returning Command Answers

Properties are the (current) system settings of the
Tracker Server. Properties can be retrieved by
Get<xxx> commands. All Get<xxx> commands
return their results in a Get<xxx>RT structure. The
RT structure for each command differs with
respect to its data members. Data members with
only a Get... with no corresponding Set...
command can be individual basic-type or enum
parameters (int, double , enum...) . Example:
GetSystemStatusRT.

However, the normally there is a command-
specific sub structure (example GetUnitsRT
contains a SystemUnitsDataT sub structure).

In other words: a sub- structure is available,
when the same parameters are used for more
than one command. This avoids code duplication.

Set/Get commands rarely fail. If a Set command
fails (return status not OK), the supplied
parameters are usually out of valid range. The
return status informs about the failure reason.

Single Measurement Answers

These are answers that follow to a previously
issued Start<xxx>MeasurementCT command.
Single measurements are often also referred to as
Stationary measurements.

This applies only when the measurement mode is
set to stationary.

e In case of a failure (which is frequent for
measurement commands), a
Start<xxx>MeasurementRT structure with the
error code is returned.

e In case of success, instead of a
Start<xxx>MeasurementRT (not designed to
take sensor results), a specifically designed
measurement type-related data packet is
received. For example, a

48

ES_DT_SingleMeasResult type indicates a
SingleMeasResultT structure, and
ES_DT_StationaryProbeMeasResult indicates
arrival of a ProbeStationaryResultT.

A successful measurement always returns
such a data-packet.

Multi-Measurement Answers

These apply to tracker related continuous

measurements only. The measurement mode is

set to one of the non- stationary modes.

In case of failure, as with single
measurement answers, a
Start<xxx>MeasurementRT with error code is
returned.

In case of success, not only one packet, but
also a series of multi-measurement packets
arrive. Each one of these packets contains a
various-sized array of 'single’ (atomic)
measurements.

See also structures 'MultiMeasResultT’,
'MultiMeasResult2T" and
'"ProbeContinuousResultT".

Only the first element of the measurement
array is covered by these structures,
although the index is valid from
0...numberOfResults-1. There is another
significant difference to single
measurements. Before the measurement data
packet stream starts, a StartMeasurementRT
with command status OK arrives
(acknowledge that the ‘start’ command has
arrived).

Single measurement results always arrive
within a certain time span. This is not the
case with continuous measurements (Grid
Mode, big time separation criteria.). A
StartMeasurementRT confirmation is therefore
essential for continuous modes.

49

A multi-measurement stream runs until
explicitly stopped, StopMeasurement or until
specified time or count thresholds are
reached.

Special Command Answers

Some commands, such as ES_C_GetReflectors and
ES_C_GetTransformedPoints,
ES_C_GetCompensations, ES_C_GetTipAdapters. do
not fit any of the above categories.

Generally spoken, all commands starting with
'Get' and ending with an 's' (i.e. plural) are treated
in a special way.

ES_C_GetReflectors must not to be mixed up with
ES_C_GetReflector (missing 's").

Convention:

The answer to these commands is made up of as
many answer-packets as reflector types (or
transformed points, Compensations, Tips...) are
available from the Tracker Server.

These answers mainly resolve the relation
between item name (string) and item ID
(numerical ID), for example the relation between
Reflector name and Reflector ID.

Apart from different other information, the
packets also contain (redundant) information on
the total number of items and the number of
packets expected to arrive.

Convention:

All string-type names are in Unicode
representation — Example: short
cReflectorName[32] declaration. It can consist of a
maximum of 32 characters, however, since 'short'
is 16 bit, there are 16 bits for every character (two
Bytes).

50

ReflectorPosResultT and ProbePosResultT can also
be seen as a special command answers. These are
ES_DT_ReflectorPosResult /| ES_DT_ProbePosResult
type packets and are received whenever the
tracker is locked onto a reflector (3 measurements
per second), supposed the
'SendReflectorPositionData’ system- setting flag is
enabled. This mechanism can be used in
applications providing graphical representation
of reflector/probe motion, even while no
continuous measurement is in ongoing.

Note that the accuracy of the positions provided
are limited. The receipt of these measurements
can be switched on/off. It is switched off by
default.

3.2.3 Error Events

Most error-type data packets ES_DT_Error are not
direct reactions to commands. They are
‘unsolicited' and can occur at any time. These
confirm the highly 'asynchronous' behavior of
emScon communication. A typical example is the
'Laser beam broken' event.

Commands contain the error status in their
answer structure in case of failure.

ES_DT_Errors type answer packets are only used
for so called 'unsolicited errors' (which can occur
at any time, regardless of a command).

3.2.4 System Status Change Events

Although already present in version 1.2 (only two
events), there has been an inflation of such

events since then. The appropriate packet type is
ES_DT_SystemStatusChange. The handling is the
same as with error events, with the only
difference that there is only one parameter.

IMPORTANT: See chapter 'Version Backward
Compatibility' for convention about handling

51

'unknown' data.

3.2.5 3D/ 6 DoF — Related commands

The essential change between emScon v1.5 and
emScon V2.0 is the introduction of 6DoF
measurement structures (6 degrees of freedom).
Some were already present in v1.5. However,
these were declared as preliminary and have
significantly changed since then.

From programming point of view, handling 6DoF
measurements is principally the same as 3D
measurements. The only difference is that other
data structures are to be used. Here is an
overview of the related commands / packets /
structures:

3D Packets/Commands 6DoF (Probe)

Packets/Commands
ES DT _SingleMeasResult ES DT _StationaryProbeMeas
Result
ES_DT_MultiMeasResult ES_DT_ContinuousProbeMea
sResult

ES DT _ ReflectorPosResult ES DT_ProbePosResult

3D Structures 6DoF Structures
SingleMeasResultT ProbeStationaryResultT
MultiMeasResultT ProbeContinuousResultT
ReflectorPosResultT ProbePosResultT

The ES_DT_SingleMeasResult2 /
SingleMeasResult2T and ES_DT_MultiMeasResult2
/ MultiMeasResult2T packets / commands are
extended variants of the relatives without the 2
in their name. The only difference is that these
versions contain extended (statistical)
information. Applications passing measurements
to the 'CallTransformation' command should use
the '2'- variants since the transformation routine

52

requires these extended statistics. See also
'SetStatisticMode' command.

3.3 C- Language TPI Reference

3.3.1 Constants

This section names the constants that can be used
with C/C++ TPI programming,.

The application needs to include the file
'Constant.h' in addition to 'ES_C_API_Def.h'.
Constants for Transformation

These constants are used exclusively for the
Weighting Scheme of the Transformation process
(see Section 9.2.6).

ES_ FixedStdDev
const double ES FixedStdDev = 0.0;

Use this value (= 0.0) to indicate a parameter as
fixed.

ES_UnknownStdDev
const double ES UnknownStdDev = 1.0E+35;

Use this value to indicate a parameter as
unknown (not fixed).

ES_ApproxStdDev
const double ES ApproxStdDev = 1.0E+15;

Use this value to weigh parameters according to
its related Standard Deviation.

See command 'SetTransformationInputParams'
for details.

53

Other Constants

The other constants defined in 'Constant.h' (Unit-
Conversion related constants) are for
informational reasons only and should not be
directly referenced by emScon applications.

3.3.2 Enumeration Types

This section describes all enumeration types and
their individual values.

ES_DataType

The ES_DataType enumeration values are used to
identify the type of data packets that are sent
to/received from the Tracker Server on TCP/IP.
There are 11 different packet types that differ in
size and structure.

The ES_DT_Command comprises many sub-
types that all differ in size and structure as well.
A related data type is PacketHeaderT, which

serves as a sub-structure in all packets.

enum ES_DataType {
ES_DT_Command,
ES DT_Error,
ES_DT_SingleMeasResult,
ES_DT_MultiMeasResult,
ES_DT_StationaryProbeMeasResult,
ES_DT_ContinuousProbeMeasResult,
ES DT_NivelResult,
ES_DT_ReflectorPosResult,
ES _DT_SystemStatusChange,
ES DT_SingleMeasResult2,
ES_DT_MultiMeasResult2,
ES_DT_ProbePosResult,

e ES DT Command
The data packet contains a command (sent),
or a command answer (received).
Related data structures: BasicCommandCT
and BasicCommandRT (which are used as
sub-structures of each command-related
structure).

e ES DT _Error
The data packet contains error information.
Such a packet means an 'Error event' (For
example 'beam broken'). It is not a reaction of
some previous command and can occur at

54

any time.
Related data structure: ErrorResponseT.

ES_DT_SingleMeasResult

The data packet contains the result of one
single (stationary 3D) measurement. 'Result'-
type packets can only be received.

Related data structure: SingleMeasResultT.

ES DT MultiMeasResult

The data packet contains results of a
continuous 3D measurement. This type of
result block is of variable size and depends
on the number of single measurements
within a block. 'Result'- type values can only
be received.

Related data structure: MultiMeasResultT.

ES_DT_StationaryProbeMeasResult

The equivalent to SingleMeasResult, but
with 6 degrees of freedom, i.e. the data block
contains 3 angular values in addition to 3
coordinate values (apart from other data).
Related data structure:
ProbeStationaryResultT.

ES DT ContinuousProbeMeasResult

The equivalent to MultiMeasResult, but with
6 degrees of freedom, that is, the data block
contains measurements each with 3 rotation
parameters in addition to 3 coordinate
position values (apart from other data).
Related data structure:
ProbeContinuousResultT

ES DT NivelResult

The data packet contains the result of a Leica
'Nivel' sensor (inclination sensor)
measurement.

Requires a Leica 'Nivel' (inclination sensor of
type 'Nivel20' or 'Nivel230') being connected
to the Tracker directly. 'Result'-type values
can only be received.

Related data structure: NivelResultT.

55

ES_DT_ReflectorPosResult:

The data packet contains position
information about the reflector. This type of
information is foreseen for special purposes
and can be suppressed.

Related data structure: ReflectorPosResultT.

ES_DT_SystemStatusChange

The data packet contains information about a
status change. Other than an error event, a
SystemStatusChange event does not mean a
failure.

Related data structure:
SystemStatusChangeT.

ES_DT_SingleMeasResult2

The data packet contains the result of one
single (stationary) measurement, in case the
statistic mode is set to ‘extended’. These
types are mainly used for measurements
used as input to the Transformation routine.
See command 'SetStatisticMode'.

The difference is that SingleMeasResult2T
contains more statistical information than the
standard SingleMeasResultT. This is an
advanced feature. The default statistic mode
is ‘standard’. (This 'type 2 meas result' has
been introduced to avoid changes to already
published TPI definitions with earlier
versions, in order not to break existing
applications.).

Related data structure: SingleMeasResult2T.

ES DT MultiMeasResult2

The data packet contains results of a
continuous measurement, in case the statistic
mode is set to ‘extended’.

See command 'SetStatisticMode'.

The difference is that MultiMeasResult2T
contains more statistical information than the
standard MultiMeasResultT.

56

The default statistic mode is ‘standard’.
Related data structure: MultiMeasResult2T.

o ES DT _ProbePosResult
The equivalent to ES_DT_ReflectorPosResult,
but related to probes with 6 Degrees of
freedom. L.e. Not only the position, but also
the rotation is supplied.

ES Command

This enumeration type names all commands that
are provided by the TPI. A data packet of type
ES_DT_Command contains exactly one of these
values. The answer packet to a command returns
the same value for acknowledgment.

See struct 'BasicCommandCT' for details.

General Information related to each command:

1.) Naming Convention Send / Receive Structs

The related data- structures for sending and
receiving data can be derived from the command
name as follows:

e Remove the ES_C_ Prefix from the command

e Add CT postfix to get name of related send-
structure (CT stands for CommandType)

e Add RT postfix to get name of related receive-
structure (RT stands for ReturnType)

Example: Structures related to command
'ES_C_Initialize' are 'InitializeCT' and
'InitializeRT'

If CT/RT structures contain sub- structs, these are
mentioned at each commands description.

Explanations are available at the command
descriptions (ES_C_...) and also at the related
structure descriptions (..CT, ..RT). To avoid too
much redundancy, descriptions are usually not
repeated at both locations. Thus it might be

57

necessary to look- up command descriptions and
related structure descriptions.

2.) Dimensions / Units of Parameters

Unless stated explicitly in the command
description, the following units of all parameters
are always in 'current units'. That is, in those
units the application/programmer has selected
with the SetUnits command:

- Length- units

- Angle- units

- Temperature- units

- Pressure- units

- Humidity- units (currently only one: percent)

This applies to parameters sent as well as those
received such as coordinates, standard
deviations, meteorological values...

e Currently, there is only one exception to this
rule: The command StartNivelMeasurement
delivers the native Nivel inclination readings.
These are milli-radiants and degrees Celsius,
regardless of currently selected units.

e Other units include:
- Time — units:
These are always in milliseconds — unless
stated differently. Example: a Stationary
Measurement Time of 2000 'means two
seconds.

e String- type parameters:
Strings as far as handled through the TPI are
always in UNICODE (arrays of unsigned
short). That is, two bytes are reserved for each
character. As far as pure ANSI text is used, an
application can just ignore each second byte.
See sample applications for examples.

e Enumeration-type parameters: These are type-
safe with the related enum definition. The

58

parameters are described at the enum-
definition location.

3.) Valid Parameter Ranges

This applies to parameters being sent to the
system, typically with one of the 'Set.." command.
Where limitations apply, these are mentioned at
the command description.

See also chapter 'Working Conditions' in the
'Introduction’ main chapter of this manual.

Note that it is never possible to violate valid
parameter ranges in such that the related 'Set..'
commands do not accept values outside valid
range and therefore will return with an error.

Reading Instructions Set/Get Command- pairs.

Information about parameter representation in
terms of current Units, Coordinate System- Type
(CS-type), Transformation and Orientation is
provided at the Description of the 'Set..'
command, but not repeated at the description of
the related 'Get..' command.

It is obvious that these information apply to both
'Set.."and 'Get..". (Although the valid range
information is obsolete for 'Get..' commands).

59

enum ES_Command

{

ES_C_ExitApplication,
ES_C_GetSystemStatus,

ES _C_GetTrackerStatus,
ES_C_SetTemperatureRange,
ES_C_GetTemperatureRange,
ES_C_SetUnits,

ES_C_GetUnits,

ES _C_Initialize,
ES_C_ReleaseMotors,
ES_C_ActivateCameraView,

ES C_Park,

ES_C_SwitchLaser,
ES_C_SetStationOrientationParams,
ES_C_GetStationOrientationParams,
ES C_SetTransformationParams,

ES _C_GetTransformationParams,
ES_C_SetBoxRegionParams,
ES_C_GetBoxRegionParams,
ES_C_SetSphereRegionParams,
ES_C_GetSphereRegionParams,
ES_C_SetEnvironmentParams,
ES_C_GetEnvironmentParams,
ES_C_SetRefractionParams,
ES_C_GetRefractionParams,
ES_C_SetMeasurementMode,
ES_C_GetMeasurementMode,

ES C_SetCoordinateSystemType,
ES_C_GetCoordinateSystemType,
ES_C_SetStationaryModeParams,
ES_C_GetStationaryModeParams,
ES_C_SetContinuousTimeModeParams,
ES_C_GetContinuousTimeModeParams,
ES_C_SetContinuousDistanceModeParams,
ES_C_GetContinuousDistanceModeParams,
ES_C_SetSphereCenterModeParams,
ES_C_GetSphereCenterModeParams,
ES_C_SetCircleCenterModeParams,
ES_C_GetCircleCenterModeParams,
ES_C_SetGridModeParams,
ES_C_GetGridModeParams,
ES_C_SetReflector,

ES _C_GetReflector,
ES_C_GetReflectors,
ES_C_SetSearchParams,
ES_C_GetSearchParams,
ES_C_SetAdmParams,

ES C_GetAdmParams,
ES_C_SetSystemSettings,
ES_C_GetSystemSettings,
ES_C_StartMeasurement,
ES_C_StartNivelMeasurement,
ES_C_StopMeasurement,
ES_C_ChangeFace,

ES_C_GoBirdBath,

ES_C_GoPosition,
ES_C_GoPositionHVD,
ES_C_PositionRelativeHV,
ES_C_PointLaser,
ES_C_PointLaserHVD,

ES_C_MoveHV,

ES_C_GoNivelPosition,
ES_C_GolLastMeasuredPoint,
ES_C_FindReflector,

ES_C_Unknown,

ES_C_LookForTarget,

ES _C_GetDirection,

ES _C_CallOrientToGravity,
ES_C_ClearTransformationNominalPointList,
ES_C_ClearTransformationActualPointList,
ES_C_AddTransformationNominalPoint,
ES_C_AddTransformationActualPoint,
ES_C_SetTransformationlnputParams,
ES_C_GetTransformationlnputParams,
ES_C_CallTransformation,

ES _C_GetTransformedPoints,
ES_C_ClearDrivePointList,
ES_C_AddDrivePoint,
ES_C_CalllntermediateCompensation,
ES_C_SetCompensation,
ES_C_SetStatisticMode,
ES_C_GetStatisticMode,
ES_C_GetStilllmage,
ES_C_SetCameraParams,
ES_C_GetCameraParams,
ES_C_GetCompensation,
ES_C_GetCompensations,

60

ES_C_CheckBirdBath,
ES_C_GetTrackerDiagnostics,
ES_C_GetADMInfo,
ES_C_GetTPInfo,
ES_C_GetNivellInfo,
ES_C_SetLaserOnTimer,
ES_C_GetLaserOnTimer,
ES_C_ConvertDisplayCoordinates,
ES_C_GoBirdBath2,
ES_C_SetTriggerSource,
ES_C_GetTriggerSource,
ES_C_GetFace,
ES_C_GetCameras,
ES_C_GetCamera,
ES_C_SetMeasurementCameraMode,
ES_C_GetMeasurementCameraMode ,
ES _C_GetProbes,
ES_C_GetProbe,
ES_C_GetTipAdapters,
ES_C_GetTipAdapter,
ES_C_GetTCamToTrackerCompensations,
ES_C_GetTCamToTrackerCompensation,
ES_C_SetTCamToTrackerCompensation,
ES_C_GetProbeCompensations,
ES_C_GetProbeCompensation,
ES_C_SetProbeCompensation,
ES_C_GetTipToProbeCompensations,
ES_C_GetTipToProbeCompensation ,
ES_C_SetExternTriggerParams,
ES _C_GetExternTriggerParams ,
ES_C_GetErrorEllipsoid,
ES_C_GetMeasurementCameralnfo,
ES_C_GetMeasurementProbelnfo,
ES_C_SetLongSystemParameter,
ES_C_GetLongSystemParameter,
ES_C_GetMeasurementStatuslinfo,
ES_C_GetCompensations2,
ES_C_GetCurrentPrismPosition,
ES_C_SetDoubleSystemParameter,
ES_C_GetDoubleSystemParameter,
ES C_GetObjectTemperature,
ES_C_GetTriggerBoardinfo,
ES_C_GetOverviewCameralnfo,
ES_C_ClearCommandQueue,
ES_C_GetADMInfo2,
ES_C_GetTrackerlinfo,
ES_C_GetNivellnfo2,
ES_C_RestoreStartupConditions,
ES_C_GoAndMeasure,

ES _C_GetTipToProbeCompensations2,

ES_C_ExitApplication

Stop and reset the Tracker Server.

Other than most commands,
‘ExitApplication” takes effect even while
another command may still be busy
(Initialization, FindReflector..). However,
there might be a delayed reaction in certain
cases. This command thus can be used for
‘emergency aborts’ in those cases where
‘StopMeasurement’ is not sufficient.
Applications cannot rely on that this
command will send any confirmation
(command completed, SystemStatus change
events). Depending on context, there may be
a reaction or not. Applications should close
the TCP/IP connection after having sent the

61

‘ExitApplication” command.

Note: ‘ExitApplication” and
‘StopMeasurement’ are the only two
exceptions of commands that cause
immediate reaction while some other
command is still pending. All other
commands will return ‘Server busy instead’.
(Hint: This does not apply to the
synchronous emScon COM interface
(LTControl)).

ES_C_GetSystemStatus
Request status information about the system.

ES_C_GetTrackerStatus
Request status information about the tracker.

ES_C_SetTemperatureRange
Set the Trackers working temperature range.

ES_C_GetTemperatureRange
Get the Trackers working temperature range.

ES_C_SetUnits

Set Current Units.

All length, angular, temperature, pressure
and humidity- type parameters of all TPI-
commands are represented in the currently
selected units.

Exception: Leica 'Nivel' (inclination sensor)
readings are provided in the sensors native
units (milli-rad, Celsius).

Related structure: SystemUnitsDataT.
ES_C_GetUnits

Queries the currently active unit- settings.
Related structure: SystemUnitsDataT.
ES_C_Initialize

Initializes the tracker.
ES_C_ReleaseMotors

Release the motor for horizontal and vertical

tracker head movement in order to allow
manual tracker head movement.

62

ES_C_ActivateCameraView

Activates the camera view. The mirror is
turned upwards in order to direct camera
view towards tracker head orientation.
Command only applies to Trackers equipped
with an overview camera.

ES C_Park
Send tracker to park position. The laser beam

points towards the floor on the opposite side
of the Bird bath.

ES_C_SwitchLaser
Switch the laser off or on. Usually used to
switch off the laser overnight.

ES C_SetStationOrientationParams

Set the 6 orientation parameters to be
applied to measurements and positioning
coordinates. Invariant orientation parameters
are {0,0,0,0,0,0}. With these default settings,
the tracker delivers measured coordinate
values (and takes positioning values) in the
instrument's CS. Orientation parameters
values are also ignored if the
applyStationOrientationParams system settings
flag is not set.

Station orientation parameters itself are in
current units and current CS-type, but
neither according to applied transformation
settings nor to applied orientation settings
(which would mean recursive). No range
limitations apply.

Related structure: StationOrientationDataT.

ES_C_GetStationOrientationParams
Queries the currently applied 6 orientation
parameters.

Related structure: StationOrientationDataT.

ES C_SetTransformationParams

Set the 7 transformation parameters to be
applied to measurements and positioning
coordinates and to (part of) the input filters

63

such as region parameters.

Invariant transformation parameters are
{0,0,0,0,0,0,1}. With these default settings, the
tracker delivers data in the instrument's CS,
(or in the 'oriented system’, if non-invariant
orientation parameters are present).
Transformation parameters are also ignored
if the applyTransformationParams system
settings flag is not set.

Transformation parameters itself are in
current units and current CS-type, but
neither according to applied orientation
settings nor to applied transformation
settings (which would mean recursive)! No
range limitations apply.

Related structure: TransformationDataT.

ES_C_GetTransformationParams
Queries the currently applied 7
transformation parameters.

Related structure: TransformationDataT.

ES_C_SetSphereRegionParams

Defines a spherical region. If the
corresponding mode is active, measurements
outside the region are suppressed. The
interpretation of the parameters is subject to
units, coordinate type, and transformation
parameters.

Related structure: SphereRegionDataT

ES_C_GetSphereRegionParams

Queries the currently valid sphere region
parameters.

Related structure: SphereRegionDataT.

ES_C_SetBoxRegionParams

Defines a box region. If the corresponding
mode is active, measurements outside the
region are suppressed. The box is connected
to the object system given by the
transformation parameters. It is defined by
its diagonal, i.e. by two points in the object

64

system. The coordinates of the points are
subject to units and coordinate type (They
are NOT subject to transformation
parameters!)

A box region is described by a coordinate
system parallel to the box edges and two
opposite vertices. All coordinates of the first
point must be less than those of the second
one. If this condition fails on input, the
corresponding coordinates are switched.
Related structure: BoxRegionDataT.

ES_C_GetBoxRegionParams

Queries the currently valid box region
parameters. Note that the retrieved point
coordinate values can be different from those
previously set by SetBoxRegion (Because of
the condition that the coordinates of the first
point must be less than those of the second
one). However, the defined box will remain
the same.

Related structure: BoxRegionDataT.

ES_C_SetEnvironmentParams

Sets the environment parameters.
(Temperature, pressure and humidity).
Parameters are in current units.

For valid parameter ranges, refer to chapter
'Working Conditions' in the 'Introduction’
main chapter of this manual.

Trying to set values outside the valid ranges
will result in command failure.

Related structure: EnvironmentDataT.

See enum 'ES_WeatherMonitorStatus' for
details on explicit and implicit updates of
environmental parameters.

Like for any 'Set...' command, a 'Status
Change Event' is thrown, supposed the
change exceeds the currently valid threshold.
In this case, it will be

65

'ES_SSC_EnvironmentParamsChanged'
event.

ES C_GetEnvironmentParams

Queries the currently valid environment

parameters.

Related structure: EnvironmentDataT.
See enum 'ES_WeatherMonitorStatus' for

details on explicit and implicit updates of

environmental parameters.

ES _C_SetRefractionParams

Set explicit Refraction Indices for
Interferometer and ADM. This is an
advanced command and should only be
used in real special situations. That is, if one
wants to use his own formula for calculating
the refractions from the environment
parameters. SetRefractionParams will
override those refraction parameters
indirectly calculated and implicitly set by a
previous call to SetEnvironmentParams.
Note SetEnvironmentParams and
SetRefractionParams are 'concurrent'
commands. Both update the refraction
parameters.

Refraction indices are dimension-less.

For valid parameter ranges refer to chapter
'‘Working Conditions' in the 'Introduction’
main chapter of this manual.

Trying to set values outside the valid ranges
will result in command failure.

A change of the environment parameters
automatically causes an internal, implicit
refraction parameter setting.

ES_C_GetRefractionParams
Query the currently valid Refraction
Parameters for Interferometer and ADM.

ES_C_SetMeasurementMode
Sets the measurement mode of the tracker.
Depending on this mode, a subsequent 'Start

66

measurement' command will result in a
'Stationary measurement' (=single point
measurement), a 'Continuous measurement'
etc.

See enum 'ES_MeasMode' for a list of modes
supported.

ES C_GetMeasurementMode
Queries the currently active measurement
mode.

ES_C_SetCoordinateSystemType

Sets the coordinate system type.

See 'ES_CoordinateSystemType' for a list of
CS- types supported. All coordinate- type
parameters of all TPI commands are
represented in the currently selected CS-

type.
ES_C_GetCoordinateSystemType
Queries the currently active CS-type.

ES_C_SetStationaryModeParams

Sets the properties for a stationary
measurement, i.e. Measurement time and
ADM use (usually do not use ADM upon
measurement). Measurement time must lie
between 500 ms and 100000 ms (0.5 — 100
seconds).

Related structure: StationaryModeDataT.

ES_C_GetStationaryModeParams

Queries the currently valid Stationary Mode
Parameters.

Related structure: StationaryModeDataT.

ES C_SetContinuousTimeModeParams
Sets the properties for a continuous time
measurement.

Related structure:
ContinuousTimeModeDataT.

ES C_GetContinuousTimeModeParams
Queries the currently valid Continuous Time

67

Mode Parameters
Related structure:
ContinuousTimeModeDataT.

ES C_SetContinuousDistanceModeParams
Sets the properties for a continuous distance
measurement.

Distance parameter is in current Length-
units. No range limitation applies to distance
parameters in theory, but there is a practical
limitation given by tracker working space.
Related structure:
ContinuousDistanceModeDataT.

ES_C_GetContinuousDistanceModeParams
Queries the currently valid Continuous
Distance mode parameters.

Related structure:
ContinuousDistanceModeDataT.

ES_C_SetSphereCenterModeParams

Sets the properties for a Sphere Center
measurement. Radius and SpatialDistance
parameters are in current Length- units. No
range limitation apply to distance and radius
parameters in theory, but there is a practical
limitation given by tracker working space.
Related structure: SphereCenterModeDataT.

ES_C_GetSphereCenterModeParams
Queries the currently valid
SphereCenterMode Parameters.

Related structure: SphereCenterModeDataT.

ES_C_SetCircleCenterModeParams

Set the properties for a Circle Center
measurement.

Radius and SpatialDistance parameters are
in current Length- units. No range limitation
apply to distance and radius parameters in
theory, but there is a practical limitation
given by tracker working space.

Related structure: CircleCenterModeDataT.

68

ES_C_GetCircleCenterModeParams
Queries the currently valid Circle Center
Mode Parameters.

Related structure: CircleCenterModeDataT.

ES C_SetGridModeParams

Sets the properties for a Grid measurement.
Grid value parameters are in current units,
and according current CS-type. No range
limitation apply to grid parameters in
theory, but there is a practical limitation
given by tracker working space.

Related structure: GridModeDataT.

ES C_GetGridModeParams
Queries the current Grid Mode Parameters.
Related structure: GridModeDataT.

ES_C_SetReflector

Sets the valid reflector type by its numerical
ID. Attention: Reflector ID's must not be
hard coded. They differ from emScon system
to emScon system. Use command
'GetReflectors' to query the system for
defined reflectors and appropriate ID-
name/type mapping.

ES C_GetReflector
Queries the ID of currently valid Reflector .

ES_C_GetReflectors

Queries all known reflectors of the Tracker
Server. Apart from other information, mainly
delivers the association between reflector
names and their numerical IDs.

ES _C_SetSearchParams

Set criteria for reflector search abort (search
radius and time out). Search radius is in
current Length- units. Maximal search
parameter is 0.5 meters.

The search time should be set into a
reasonable relation to the search radius.
Large search radii result in extended search

69

times unless limited by the search timeout
value. The minimum value for the
SearchTimeout is 10’000 ms (10 seconds);
the maximum is 240'000 ms (4 minutes).

Related structure: SearchParamsDataT.
For a detailed description see there.

ES_C_GetSearchParams

Queries the currently valid criteria for
aborting a reflector search.

Related structure: SearchParamsDataT.
For detailed description see there.

ES C_SetAdmParams

Set parameters for the ADM (stability, time,
retries). Attention: This is a 'dangerous’
command. Lowering the stability criteria will
result in measurement precision loss. Only
change these values if really required due
instable conditions (ground vibrations etc.)
TargetStabilityTolerance is a distance
parameter and is in current length- units.
TargetStabilityTolerance must lie between
0.005 and 0.1 Millimeter. Leave this value as
low as possible! (Default is 0.005).
RetryTimeFrame is in milliseconds in the
range between 500 and 5000.

Related structure: AdmParamsDataT.

ES _C_GetAdmParams

Queries the currently valid ADM
parameters.

Related structures: SetAdmParamsCT,
SetAdmParamsRT and AdmParamsDataT.

ES_C_SetSystemSettings

Sets system settings, a collection of flags to
control the behavior of Tracker Server.

See struct 'SystemSettingsDataT' for details.
Related structures: SetSystemSettingsCT,
SetSystemSettingsRT and SystemSettingsDataT .

70

ES_C_GetSystemSettings
Queries the currently valid System Settings.
Related structure: SystemSettingsDataT.

ES_C_StartMeasurement

Triggers a measurement — regardless of the
measurement mode. L.e. depending on
selected mode, Start Measurement may start
a Stationary3D- a StationaryProbe-, a
Continuous3D- or a ContinuousProbe
measurement.

Once a continuous measurement (with
unlimited time/points) has been started, it
can only be stopped on using
ES_C_StopMeasurement (apart from beam
break).

Note: ‘StopMeasurement’ can also be used to
interrupt some other lengthily taking (but
deterministic) commands (Except on using
the emScon COM [LTControl] synchronous
interface — See Chapter ‘Proper Interface
Selection”). Further details see description of
‘ES_C_StopMeasurement’.

ES_C_StartNivelMeasurement

Triggers a Leica 'Nivel' (inclination sensor)
measurement, if sensor is available. Note:
result are in native Nivel units (milli-
radiant, Celsius), regardless of the currently
set angular and temperature units. This is an
exception to the common convention.
Reason: It does not make sense to provide
very small angles (parts of milli- radiants) in
Degrees or Gons.

ES_C_StopMeasurement

Stopping a continuous measurement is the
main purpose of this command.

However, this command can also be used to
interrupt other long taking, but deterministic
actions (This is a new feature introduced
with V2.0 and is not available on earlier

71

emScon versions).

Commands that can be interrupted include:
Stationary Measurements (if a long
measurement time is applied), those
Positioning Commands including a spiral
reflector search (GoPosition, FindReflector..),
and finally the ‘OrientToGravity” and
‘Automated Intermediate Compensation’
processes.

Note: the Tracker ‘Initialize’ command
cannot be interrupted.

Interruption of long taking commands is also
not possible when using the emScon COM
[LTControl] synchronous interface. If an
issue, use the asynchronous COM interface.
For details see chapter ‘Proper Interface
Selection’.

ES_C_ChangeFace
Changes the tracker face before the laser
beam is attached to the same position.

ES_C_GoBirdBath

3D Modes: Laser beam is sent to the Bird
bath. The beam is 'attached' to the reflector in
the Bird bath and the Interferometer distance
is set to the known Bird- bath distance. This
command is especially important for LT-
series trackers without ADM. For such
tracker, there is no other way to set the
interferometer distance.

6D Modes: GoBirdBath does not make sense
for a Probe. This command thus has a
different effect while one of the 6D
measurement modes is active. The laser
beam is sent to zero position instead (which
is on the opposite side of the BirdBath),
where it can then be catched with the probe.

ES C_GoPosition
Laser beam is sent to a specified location,
followed by an implicit 'Find reflector'. The

72

beam is 'attached' to the reflector (if found).
Input is in current units, CS-type and
according to applied orientation /
transformation parameters. No range
limitations apply to these parameters in
theory, but there is a practical limitation
given by tracker working volume. The
useADM flag should always be set for
trackers equipped with an ADM.

If ADM flag is not set, the IFM distance is
calculated from the supplied coordinates and
is set as the valid one. To be used with
caution!

The search time depends on the search
radius. Large search radii result in extended
search times, unless limited by the search
timeout value selected by 'SetSearchParams'.
See command 'SetSearchParams' for details.
A ‘GoPosition” command in progress can be
interrupted with ‘ES_C_StopMeasurement'.

ES C_GoPositionHVD

Laser beam is sent to specified location,
followed by an implicit 'Find reflector'. Input
is in current units as horizontal, vertical and
distance parameters related to the values of
the 'instrument CS' and raw' measurement
values, regardless of current CS and CS-type.
Range limitations apply with respect to the
tracker elevation limits. The useADM flag
should always be set for trackers equipped
with an ADM.

If ADM flag is not set, the provided distance
is taken as new IFM distance. To be used
with caution!

The search time depends on the search
radius. Large search radii result in extended
search times, unless limited by the search
timeout value selected by 'SetSearchParams'.

73

See command 'SetSearchParams' for details.
A ‘GoPositionHVD’ command in progress
can be interrupted with
‘ES_C_StopMeasurement’.

PositionRelativeHV

Position (relative)the tracker head to the
given horizontal and vertical angles. The
angles are 'signed’ values in order to specity
the direction. Parameters are according to
currently set angular units. Range limitations
apply with respect to the tracker elevation
limits.

ES_C_PointLaser

Similar to ES_C_GoPosition, but laser beam
is sent to the specified location only. A
reflector is neither searched nor attached.

ES_C_PointLaserHVD

Same as ES_C_GoPositionHVD (laser beam
is sent to the specified location), but a
reflector is neither searched for nor attached.

ES_C_MoveHV

Command to start laser beam movement in
horizontal, vertical direction, or to stop
movement. Zero values mean 'stop
movement'.

The parameters for MoveHYV are 'signed'
values in order to specify the direction of
movement. The parameters are 'speed values
in the range between -100 < x <100

ES_C_GoNivelPosition

This command moves the tracker head to
one of the defined 'Nivel' positions (1 to 4).
The laser tracker moves at a slow speed to
avoid disturbing the 'Nivel' inclination
sensor. This command is used for the orient
to gravity procedure.

ES_C_GoLastMeasuredPoint
Positions the laser beam to the location that

74

has been last measured successfully in
stationary mode.

ES_C_FindReflector

Searches a reflector at the given position.
Reflector is attached if found. The approx
distance is only required to calculate the
'opening angle' of the laser beam from the
given search parameter. An inaccurate
approx distance only has the effect that the
real search radius will be bigger or smaller
than specified in SetSearchParams. It has no
effect to measurement quality. Approx
distance parameters are in current Length
Unit. Although no range limitation applies in
theory, there is a practical limitation given by
tracker working space: 100 mm < approxDist
<= 50000 mm. Note: the minimum value is
101 mm, not 100 mm!

The search time depends on the search
radius. Large search radii result in extended
search times.

See also command 'SetSearchParams'.

A ‘FindReflector’ command in progress can
be interrupted with
‘ES_C_StopMeasurement’

ES_C_Unknown
Used for initialization purposes only. Does
not appear as an answer to a command .

ES_C_LookForTarget

Looks for a reflector at the given position
and returns H, V values, if a reflector is
present. Values are in current angular units.
This command is mainly useful for LT- series
of Tracker without ADM and should not be
used in general.

ES_C_GetDirection,

Returns H, V values even without a reflector
locked on. Values always are in current
angular units.

75

ES_C_CallOrientToGravity

Triggers an “‘Orient to Gravity” process. The 2
inclination parameters are returned as a
result. Result values are in current angular
units and are typically used as RotVall,
RotVal2 input values for the
SetStationOrientationParams command.
Note: this is a rather long-taking command.
It can be interrupted with
‘ES_C_StopMeasurement’.

ES C_ClearTransformationNominalPointList
Clears the current nominal point list (which
is used as input data for the Transformation
process).

For all transformation related commands, see
Section 9.2 for details.

ES_C_ClearTransformationActualPointList
Clears the current actual point list (which is
used as input data for the Transformation
process).

ES _C_AddTransformationNominalPoint
Adds a point to the transformation input
nominal point list. Values are expected in
current units, current CS-type.
Transformation parameters are not taken
into account.

ES C_AddTransformationActualPoint

Adds a point to the transformation input
actual point list. Values are expected in
current units, current CS-type and according
current transformation settings (in contrast
to AddTransformationNominalPoint).

ES_C_SetTransformationInputParams
Sets the input params for the
transformation. . Values are expected in
current units and current CS-type (No
transformation applies). For all
transformation related commands, see

76

Section 9.2 for details.

Input Standard deviations should take one of
the constant values defined in the chapter
'Constants for Transformation' (TPI
Reference).

In particular, they one of the following
values should be assigned:

0.0 — If parameter to be fixed,

1.0E+35 - If parameter unknown, or
1.0E+15 — If parameter approximately
known.

Rather use the predefined constant symbols
than hardcoded numerical values!

ES_C_GetTransformationInputParams
Gets the currently active transformation
input parameters.

ES C_CallTransformation

Triggers the transformation-parameter
calculation process. The 7 transformation
parameters (including statistical information)
are returned as a result. Values are delivered
in current units and current CS-type (the
same as with TransformationInputParams).
For all transformation related commands, see
Section 9.2 for details.

ES_C_GetTransformedPoints

Retrieves the ‘secondary’ transformation
results (= transformed points including
statistical information and their residuals to
nominal points) after a successful
‘CallTransformation’. Values are provided in
current units, current CS-type (but not
according to current orientation settings).
Transformed points do match the nominal
points (apart from residuals). For all
transformation related commands, see
Section 9.2 for details.

ES_C_ClearDrivePointList
Clears the current drive point list (used as

77

input data for the Intermediate
Compensation).

ES_C_AddDrivePoint

Add a point to the drive point list for the
Intermediate Compensation. Values are
expected in current units, current CS-type
and according current orientation /
transformation settings.

For all intermediate compensation related
commands, see main chapters 8 (sub- chapter
Automated Intermediate Compensation).

ES_C_CalllntermediateCompensation
Triggers an ‘Intermediate Compensation’
process and calculation.

A successful result will not automatically
become the active compensation.

For all intermediate compensation related
commands, see main chapters 8 (sub- chapter
Automated Intermediate Compensation).
Note: this is a long-taking command. It can
be interrupted with
"ES_C_StopMeasurement’.

Note: After successful termination, the
calculated (in-work) compensation must be
activated by performing a
'SetCompensation(0)' command.

See detailed description of
'ES_C_SetCompensation' (enum
ES_C_Command) about the meaning of
parameter zero.

ES_C_GetCompensations

Reads all Tracker- compensations stored in
the database. Apart from the internal ID and
name (which is made up of the
compensation date), a series of properties is
delivered. This command should no longer
be used. Rather use the following;:

ES_C_GetCompensations?2
Enhanced version of

78

ES_C_GetCompensations. Delivers comment
for ADM compensation and active
compensation as additional information.
ES_C_GetCompensations only left for
backward compatibility reasons. New
applications should use
ES_C_GetCompensations2. The older "
'ES_C_GetCompensations' is only kept for
compatibility reasons.

(Remark: This command should have better
be named 'GetTrackerCompensations2' in
order to distinguish between other
compensation types)

ES_C_SetCompensation

Sets the specified tracker compensation with
the given ID as the active one. The available
Tracker compensations including their IDs
can be retrieved with the command
'‘GetCompensations'.

Note: Compensations have internal IDs > 0.
Nevertheless, ID 0 is a valid value to
SetCompensation() in a special situation:
After an Automated Intermediate
Compensation has been performed (on using
the command
'ES_C_CallIntermediateCompensation'), this
new compensation is still in a temporary
state (which we call an 'in-work' state). It will
not be accepted and activated before
confirmed with SetCompensation(0).

The reason for that is that an application will
show the quality results (RMS etc.) of the
Intermediate Compensation to the user.
Based on these results, the user decides
whether to accept or to discard this
compensation . Sending
'SetCompensation(0)' means 'Accept’. Doing
nothing (respectively re-start another
intermediate compensation) means discard.
Note that the 'philosophy' used here is very

79

similar to a Manual Intermediate (or Full)
compensation performed with the
Compensation application: An 'in-work'
compensation is being created upon the first
measurement. When all measurements done,
the compensation result is calculated and
displayed. Based on these results, the user
decides to Accept the result or not.

ES_C_GetCompensation

Reads the currently active compensation ID.
Only the internal ID is returned. For
additional information, the properties need
to be looked up in the list delivered by
ES_C_GetCompensations

ES_C_SetStatisticMode,

Switches the statistic mode between
‘standard” and ‘extended’. This mode only
influences the Single- and Multi-
measurement results. This is an advanced
feature. Extended statistic mode should only
be used if enhanced statistical information is
required. This is for example the case when
using stationary measurements as input to
the transformation routine.

See difference between
Single/MultMeasResultT (standard) and
Single/MultMeasResult2T enhanced).

ES_C_GetStatisticMode
Gets the current statistic mode.

ES_C_GetStilllmage

Requests a still image (in case the tracker is
equipped with an Overview Camera).

For all Still Image related commands, see
main chapters 8 (sub- chapter Still Image).

ES_C_SetCameralParams

Sets the current contrast and brightness
parameters of the Overview Camera. Valid
values are between 1..255. Saturation is
currently ignored and should be zero.

80

ES_C_GetCameralParams
Get current Overview Camera parameters.

ES_C_CheckBirdBath

Carries out Bird bath check routine. Returns
Initial and current differences of BirdBath
Angles and Distances. Values are expected
in current units.

ES_C_GetTrackerDiagnostics

Returns Tracker diagnostic information. This
is an advanced / diagnostic command. Not
usually used by common applications. See
Tracker hardware manual for details.

ES_C_GetADMInfo

ES_C_GetADMInfo2

Returns Absolute Distance Meter feature
information (Version and Serial Number), if
available (i.e. If a LTD/AT series tracker).
See also extended command
ES_C_GetADMInfo2 (introduced with
emScon V2.3).

New applications should always use
ES_C_GetADMInfo2. The former one is only
kept for compatibility reasons.

ES C_GetTPInfo

Returns Tracker Processor feature
information. See Tracker/TP hardware
manual for details.

ES_C_GetNivellnfo

ES C_GetNivellnfo2

Returns 'Nivel' (Inclination sensor) feature
information, if a 'Nivel' is available. (Version
and Serial Number). See also extended
command ES_C_ GetNivellnfo2 (introduced
with emScon V2.3)

New applications should always use ES_C_
GetNivellnfo2. The former one is only kept
for compatibility reasons.

81

ES_C_SetLaserOnTimer
Switches the laser on in predefined time

ES C_GetLaserOnTimer
Reads the remaining time left before it is
switched on

ES_C_ConvertDisplayCoordinates

Converts display coordinate triples from
base to current and back.

This is a private function/command and is
not documented/supported. It should not be
used for any client programming

ES C_GoBirdBath2

Sets the laser beam to the Bird bath by
turning tracker head in specified direction
(clockwise or counter clockwise). Note: This
command only applies to 3D measurement
modes. See description of ES_C_GoBirdBath
for more details.

ES_C_SetTriggerSource

Sets the Trigger Source for triggering
measurements from remote (e.g. Probe
buttons, or clock signal).

See "Tracker Trigger Interface' Appendix for
a more detailed description of trigger- issues.

ES_C_GetTriggerSource
Get the currently active Trigger source

ES C_GetFace
Get the currently active Tracker- Face (I or II)

ES_C_GetCameras

Enumerate all Measurement cameras known
to the system (i.e. those defined in the
database). Apart from the 'internal' ID, a
selection of properties is delivered (Name,
Type, Serial number....). This approach is the
same as used for the command
'ES_C_GetReflectors' or
'ES_C_GetCompensations'.

82

ES C_GetCamera

Get the currently active, i.e. mounted
camera. Only the internal ID is returned. For
additional information, the properties need
to be looked up in the list delivered by

ES C_GetCameras

ES_C_SetMeasurementCameraMode

This command only applies to tracker
systems equipped with a T-Cam. Allows to
switch between Measurement- and
Overview mode. If in Overview mode, the T-
Cam plays the role of a 'classic' camera as
already available with LT/D 500 series. That
is, commands such as 'ActivateCameraView',
Set/GetCameraParams, GetStilllmage apply.

ES C_GetMeasurementCameraMode
Get the currently active T-Cam mode
(Measurement, Overview).

ES_C_GetProbes

This command only applies to tracker
systems equipped with a T-Cam.

Delivers all T-Probes known to the system,
including ID and other properties. This
command is the 6DoF relative to
ES_C_GetReflectors of a 3D system.

ES_C_GetProbe
Gets the ID of the currently active Probe.

ES_C_GetTipAdapters

This command only applies to tracker
systems equipped with a T-Cam.

It delivers all Measurement Tip Adapters
known to the system, including ID and other
properties. This command is similar to
ES_C_GetReflectors of a 3D system.

Explanation of Terms:

83

Probe

> Tip Adapter Interfaces

B U— Tip Adapter
—l— Tip (= 5ylus)

Tip Assembly (5tylus Assembly):
Combination of Tip and Tip Adapter

Note that the terms ‘“Tip” and “Stylus” are
equivalent. The former is used in by the TP,
while the Compensation Application mainly
uses the latter.

A ‘TipAssembly’ (= StylusAssembly)
addresses the actual combination of Tip and
TipAdapter. The TipAssembly is designed as
a property of a TipAdapter and mainly
consists of Tip Length and the diameter of
the ruby sphere. There is one and only one
TipAssembly for each TipAdapter.
TipAssemblies can only be defined from
within the Compensation Module (apart
from importing TipAdapters with already
existing valid TipAssembly). The
TipAssembly must be redefined each time a
different Type of Tip (Stylus) is attached to a
TipAdapter. Moreover, a TipAssembly
definition must be followed by a TipToProbe
Compensation.

Note that a particular Tip — other than a
TipAdapter — does not have its own ID. For
that reason, there is no ‘GetTips’ command.
Tips can only be identified indirectly
through the TipAdapter they are mounted to
It is the users responsibility to correctly
define length and radius (upon defining a
TipAssembly for a particular TipAdapter).

84

These values (in addition to a user- defined
comment) can be retrieved through the
command GetTipAdapters.

ES_C_GetTipAdapter
Gets the ID of the currently active Tip
Adapter.

ES_C_GetTCamToTrackerCompensations
Reads all T-Cam to Tracker- compensations
stored in the database. Apart from the
internal ID and name, a series of properties is
delivered.

ES_C_GetTCamToTrackerCompensation
Reads the currently active T-Cam to Tracker
compensation ID. Only the internal ID is
returned. For additional information, the
properties need to be looked up in the list
delivered by ES_C_
GetTCamToTrackerCompensations

ES_C_SetTCamToTrackerCompensation
Sets the specified tracker compensation with
the given ID as the active one. The available
TCamToTracker compensations including
their IDs can be retrieved with the command
' GetTCamToTrackerCompensation '.

ES_C_GetProbeCompensations

Reads all Probe- compensations stored in the
database. Apart from the internal ID and
name, a series of properties is delivered.

ES_C_GetProbeCompensation

Reads the currently active probe
compensation ID. Only the internal ID is
returned. For additional information, the
properties need to be looked up in the list
delivered by
ES_C_GetTCamToTrackerCompensations

ES_C_SetProbeCompensation
Sets the specified Probe compensation with
the given ID as the active one. The available

85

Probe compensations including their ID's can
be retrieved with the command ' Get
GetProbeCompensations '.

ES_C_GetTipToProbeCompensations

Reads all TipToProbe- compensations stored
in the database. Apart from the internal ID
and name, a series of properties is delivered.
This command should no longer be used. It
is only kept for compatibility reasons. Rather
use ' ES_C_GetTipToProbeCompensations2'
instead (see further below).

ES_C_GetTipToProbeCompensation
Reads the currently active TipToProbe
compensation ID. Only the internal ID is
returned. For additional information, the
properties need to be looked up in the list
delivered by
ES_C_GetTipToProbeCompensations

ES_C_SetExternTriggerParams

Set the behavior of the external trigger.
related structure: ExternTriggerParamsT.

See 'Tracker Trigger Interface' Appendix for
a more detailed description of trigger- issues.

ES_C_GetExternTriggerParams
Set the parameters of the external trigger.

ES_C_GetErrorEllipsoid

Convenience function to calculate an error
ellipsoid from a given point with Standard
Deviations and Covariance.

Input is in current units, current CS-type and
applied orientation / transformation settings.
Output is always in RHR.

ES_C_GetMeasurementCameralnfo
Returns Measurement Camera feature
information. See Tracker/T-Cam hardware
manual for details.

See also GetMeasurementCameralnfoRT
structure.

86

ES C_GetMeasurementProbelnfo

Returns Probe feature information. See
Tracker/Probe hardware manual for details.
See also GetMeasurementProbelnfoRT
structure.

ES_C_SetLongSystemParameter

This is an advanced command to set
SystemSettings parameters of type Long,
Boolean and enum- types individually. This
approach was chosen to avoid extending the
existing 'SystemSettingsDataT" structure.
There are now some parameters covered by
both commands (For example
WeatherMonitorStatus). For these, either
command (SetSystemSettings or
SetLongSystemParameter) can be used.

See enum ES_SystemParameter for values
supported by this command.

Some system parameters are new and can
only be addressed by this command and not
by the former SetSystemSettings command
(Example: ES_SP_AllowProbeWithoutTip).

ES_C_GetLongSystemParameter

Get current (long- type) system parameter.
The opposite of
ES_C_SetLongSystemParameter

ES C_GetMeasurementStatusinfo

Get information about availability of all
types of compensations and related
hardware.

The information data is delivered as a long
value representing a bit-mask. Use the enum
ES_MeasurementStatusInfo values to
identify / mask the long parameter
information.

ES_C_GetCurrentPrismPosition

Get the current position of the prism the
laser beam is currently attached to. This can
be a reflector or the prism of a probe.

87

Delivered position parameters are with all
‘tilters” applied (Units, CS- Type,
Transformation, Orientation). In other
words: the ‘same’ values as a stationary
measurement would deliver. However, these
position values are NOT as accurate as
stationary measurements. Do NOT use these
values as measurements where precise
measurements are required.

The background for this command is as
follows: If a probe is attached, it is not
possible to take 3D measurements to the
probe prism. A measurement to the probe
delivers the tip position, not the prism
position. However, there exist situations
where the position of the probe prism may
be of interest (for example when issuing a
GoPosition as a reaction of a beam broken
event — supposed the probe is always placed
to the same location).

Thus, this command is probably only of
interest for Probe related enterprises.

ES_C_SetDoubleSystemParameter

This command is virtually the same as
ES_C_SetLongSystemParameter. The only
difference is that it takes 'double- type'
parameters.

See ES_SystemParameter, where items
suitable to this command have been marked
with a D_ prefix.

Example for such a parameter:
ES_SP_D_ObjectTemperatureTolerance.

ES_C_GetDoubleSystemParameter
Get current (double- type) system
parameter. The opposite of
ES_C_SetDoubleSystemParameter.

ES_C_GetObjectTemperature
Get the Object Temperature. This command
only succeeds if there is a weather monitor

88

(Leica AT meteo station or Thommen
station) connected to emScon.

A temperature device must be connected to
the weather stations TEMP2 port (applies to
Thommen and AT station).

For the AT meteo station, TEMP1 relates to
an integrated temperature sensor while for
the Thommen station, it is assumed that
both, TEMP1 and TEMP2 ports have a
sensor assigned. TEMP1 is used for air
temperature and TEMP2 serves for Object
Temperature.

Note (Thommen only): if TEMP1 is not used
and there is only a device assigned to
TEMP2, then TEMP?2 is interpreted as air
temperature. In this case, there is no object
Temperature available and the
'GetObjectTemperature' command will fail
with a usage conflict error.

ES_C_GetTriggerBoardInfo

Returns feature information about the
trigger board. This is an advanced /
diagnostic command. Not usually used by
common applications. See Tracker/T-Cam
hardware manual for details.

See GetTriggerBoardInfoRT structure.

See also "Tracker Trigger Interface'
Appendix for a more detailed description of
trigger- issues.

ES C_GetOverviewCameralnfo

Returns feature information about the
(optional) overview camera. See Tracker/T-
Cam hardware manual for details.

See also GetOverviewCameralnfoRT
structure.

ES_C_ClearCommandQueue

With emScon version V2.3, command
buffering has been introduced.

'Server Busy' errors will therefore no longer

89

apply under normal conditions. Instead,
commands will be appended to a queue
when sent while a previous command is
still busy. The queued command(s) will be
executed as soon as the previous command
finishes.

However, this mechanism is disabled by
default (due to compatibility reasons to
existing client applications). The buffering-
level must be explicitly enabled with the
'ES_SP_TcpCommandQueueSize' system
setting (to be used with
SetLongSystemParamter). The maximum
level is 10 (= max queue- size).

Example: if queue size is set to 5 and an
application is trying to buffer more than 5
commands, then a 'Server Busy' is being
issued. The default level is zero (command
buffering disabled)

ES C_GetADMInfo2

Returns Absolute Distance Meter feature
information (Type, Version, Serial Number,
measuring range), if available (i.e. if a
LTD/AT series tracker).

This is an extended version of the former
command 'GetADMInfo'. 'GetADMInfo' is
only kept for compatibility reasons to
existing applications. New applications
should use 'GetADMInfo2' instead.

ES_C_GetTrackerInfo

Returns Tracker feature information
(Version and Serial Number, tracker- type,
measuring ranges, configuration etc). This
is a new command introduced with emScon

V2.3.

ES_C_GetNivellnfo2

Returns 'Nivel' (Inclination sensor) feature
information, if a 'Nivel' is available. (Type,
Version, Serial Number, measuring

90

ranges..).

This is an extended version of the former
command 'GetNivellnfo'. 'GetNivellnfo' is
only kept for compatibility reasons to
existing applications. New applications
should use 'GetNivellnfo2' instead.

ES_C_RestoreStartupConditions

Resets the system to a state as if there was a
reboot of the tracker server. The effect is
virtually the same as for the
'ES_C_ExitApplication' command, except
the server does not stop and thus the
connection does not get lost.

All non- persistent settings (such as 'trigger
source', 'show all 6DoF measurements' etc.)
are reset to defaults.

This command is convenient during
development of an application, when
crashes or immediate stopping upon
debugging occurs.

Nevertheless, it's a good idea to perform
this call every time at startup of an
application - even for retail versions.
Attention: It is recommended to execute
this command upon startup and only upon
startup of a client- application (i.e. just
after connecting to emScon server). This
command may only be called with caution
later at runtime. It may have side effects
the application is not aware of.

ES_C_GoAndMeasure

The 'GoAndMeasure' command is just for
convenience. Its primary intention is for
automated inspection tasks.
'GoAndMeasure' combines the functionality
of the command 'GoPosition' and a
stationary 3D measurement.

The advantage is an improved speed,
especially if a T-Cam is mounted. (A

91

'traditional’ Go Position - if a T-Cam is
mounted - takes a longer time because the
system first needs to detect whether the
target is a Probe or just a Reflector. The
'GoAndMeasure' command - since
restricted to 3D - can surpass this detection
task).

Note that 'GoAndMeasure' always
performs a 3D stationary measurement,
regardless of the current measurement
mode! However, the measurement
parameters are the same as those set with
'SetStationaryModeParams'.

The three input values of 'GoAndMeasure'
have the same meaning as those of the
command 'GoPosition": They specify the
location where the laser is directed to,
followed by a spiral search and a
measurement. The input Values are in
current units / CS-type and according to
applied orientation / transformation
parameters.

The result (i.e. the coordinates of the
measured point, if command successful), is
returned the same way as for an ordinary
stationary measurement: through either a
'SingleMeasResultT" or a
'SingleMeasResult2T', depending on the
selected statistic level. Only in case of
failure, the error code is returned through a
'‘GoAndMeasureRT" structure.

Note that the implementation of the
'GoAndMeasure' command in the emScon
COM interface (LTControl) is slightly
different from the description here (which
relates to the C- interface). However, the
COM Type-Library describes the
functionality in a self- explaining manner.

ES_C_GetTipToProbeCompensations2
Reads all TipToProbe- compensations

92

stored in the database. Apart from the
internal ID and name, a series of properties
is delivered.

This command replaces the former
ES_C_GetTipToProbeCompensations'
command.

ES ResultStatus

Defines the supported result status values
received as an answer to TPI commands.

The ES_ResultStatus enum only defines those
errors that originate on the emScon server.

It does not cover those errors that originate at the
sensor controllers. For a complete listing of
possible hardware/controller errors,

see the Appendices at the end of this manual.

93

enum ES_ResultStatus

{

ES_RS_AIIOK,

ES_RS_ServerBusy,
ES_RS_NotImplemented,
ES_RS_WrongParameter,
ES_RS_WrongParameterl,
ES_RS_WrongParameter2,
ES_RS_WrongParameter3,
ES_RS_WrongParameter4,
ES_RS_WrongParameter5,
ES_RS_WrongParameter6,
ES_RS_WrongParameter7,
ES_RS_Parameterl10OutOfRangeOK,
ES_RS_ParameterlOutOfRangeNOK,
ES_RS_Parameter20utOfRangeOK,
ES_RS_Parameter20utOfRangeNOK,
ES_RS_Parameter30utOfRangeOK,
ES_RS_Parameter30utOfRangeNOK,
ES_RS_Parameter40utOfRangeOK,
ES_RS_Parameter40utOfRangeNOK,
ES_RS_Parameter50utOfRangeOK,
ES_RS_Parameter50utOfRangeNOK,
ES_RS_Parameter60utOfRangeOK,
ES_RS_Parameter60utOfRangeNOK,
ES_RS_WrongCurrentReflector,
ES_RS_NoCircleCenterFound,
ES_RS_NoSphereCenterFound,
ES_RS_NoTPFound,
ES_RS_NoWeathermonitorFound,
ES_RS_NolLastMeasuredPoint,
ES_RS_NoVideoCamera,

ES_RS_NoAdm,

ES_RS_NoNivel,
ES_RS_WrongTPFirmware,
ES_RS_DataBaseNotFound,
ES_RS_LicenseExpired,
ES_RS_UsageConflict,
ES_RS_Unknown,
ES_RS_NoDistanceSet,
ES_RS_NoTrackerConnected,
ES_RS_TrackerNotlnitialized,
ES_RS_ModuleNotStarted,
ES_RS_ModuleTimedOut,
ES_RS_ErrorReadingModuleDb,
ES_RS_ErrorWritingModuleDb,
ES_RS_NotInCameraPosition,
ES_RS_TPHasServiceFirmware,
ES_RS_TPExternalControl,
ES_RS_WrongParameters8,
ES_RS_WrongParameter9,
ES_RS_WrongParameterl0,
ES_RS_WrongParameterill,
ES_RS_WrongParameterl?2,
ES_RS_WrongParameteri3,
ES_RS_WrongParameterl4,
ES_RS_WrongParameteril5,
ES_RS_WrongParameterl6,
ES_RS_NoSuchCompensation,
ES_RS_MeteoDataOutOfRange,
ES_RS_InCompensationMode,
ES_RS_InternalProcessActive,
ES_RS_NoCopyProtectionbongleFound,
ES_RS_ModuleNotActivated,
ES_RS_ModuleWrongVersion,
ES_RS_DemoDongleExpired,
ES_RS_Parameter ImportFromProbeFailed,
ES_RS_ParameterExportToProbeFailed,
ES_RS_TrkCompMeasCameraMismatch,
ES_RS_NoMeasurementCamera,
ES_RS_NoActiveMeasurementCamera,
ES_RS_NoMeasurementCamerasinDb,
ES_RS_NoCameraToTrackerCompSet,
ES_RS_NoCameraToTrackerComplnDb,
ES_RS_ProblemStoringCameraToTrackerFactorySet,
ES_RS_ProblemWithCameralnternalCalibration,
ES_RS_CommunicationWithMeasurementCameraFailed,
ES_RS_NoMeasurementProbe,
ES_RS_NoActiveMeasurementProbe,
ES_RS_NoMeasurementProbesInDb,
ES_RS_NoMeasurementProbeCompSet,
ES_RS_NoMeasurementProbeCompInDb,
ES_RS_ProblemStoringProbeFactorySet,
ES_RS_WrongActiveMeasurementProbeCompinDb,
ES_RS_CommunicationWithMeasurementProbeFailed,
ES_RS_NoMeasurementTip,
ES_RS_NoActiveMeasurementTip,
ES_RS_NoMeasurementTipsinDb,

94

ES_RS_NoMeasurementTipCompInDb,
ES_RS_NoMeasurementTipCompSet,
ES_RS_ProblemStoringTipAssembly,
ES_RS_ProblemReadingCompensationDb,
ES_RS_NoDataTolmport,
ES_RS_ProblemSettingTriggerSource,
ES_RS_6DModeNotAl lowed,
ES_RS_Bad6DResult,
ES_RS_NoTemperatureFromwM,
ES_RS_NoPressureFromwM,
ES_RS_NoHumidityFromWM,
ES_RS_6DMeasurementFace2NotAl lowed,
ES_RS_InvalidlnputData,
ES_RS_NoTriggerBoard,
ES_RS_NoMeasurementShankCompSet = 10001,
ES_RS_NoVal idADMCompensation = 10002,
ES_RS_PressureSensorProblem = 10003,
ES_RS_MeasurementStatusNotReady = 10004,

ES_RS_AIIOK
Meaning: The command terminated
successfully.

ES_RS_ServerBusy

Meaning: A previously invoked command
was being processed when the next
command was invoked. The 'next' command
was not executed.

Note: The application should always wait,
until the previous command has terminated,
before issuing the next command. This is due
to the asynchronous communication
behavior of the emScon C/C++ TPI. This
indicates a programming error in the
application — The application did not await
the termination of the previous command,
before issuing a new one.

This error should not occur when using the
synchronous interface of the COM TPL

ES_RS_NotImplemented

Meaning: A command that is already
specified in the programming interface, but
not yet implemented/supported, was being
executed.

This may occur in pre-releases (Beta
versions) of emScon.

ES_RS_WrongParameter

This error applies to commands with only
one parameter.

Meaning: The parameter of the issued

95

command was not accepted and executed.
This error is issued if, for example:

- A positive value is expected but the user
passed a negative one.

- The parameter is out of valid range. Very
often, this is due to wrong unit selection.

Note: Check the valid range and current unit
of the command parameter (see command
description).

Example: The system is currently set to
'Meters' for length units, but the user enters
5000 (5000 mm) instead of 5.

ES_RS_WrongParameterl
ES_RS_WrongParameter2
ES_RS_WrongParameter3
ES_RS_WrongParameter4
ES_RS_WrongParameterb
ES_RS_WrongParameter6
ES_RS_WrongParameter?
ES_RS_WrongParameter8
ES_RS_WrongParameter9
ES_RS_WrongParameter10
ES_RS_WrongParameter11
ES_RS_WrongParameter12
ES_RS_WrongParameter13
ES_RS_WrongParameter14
ES_RS_WrongParameter1l5

ES_RS_WrongParameter16
Meaning: Applies to commands with
more than one parameter. The symbol
specifies which one of the parameters is
wrong.

ES_RS_Parameter1OutOfRangeOK
ES_RS_Parameter1OutOfRangeNOK

96

ES_RS_Parameter20utOfRangeOK
ES_RS_Parameter20utOfRangeNOK
ES_RS_Parameter30utOfRangeOK
ES_RS_Parameter30utOfRangeNOK
ES_RS_Parameter4OutOfRangeOK
ES_RS_Parameter4OutOfRangeNOK
ES_RS_Parameter50utOfRangeOK
ES_RS_Parameter50utOfRangeNOK
ES_RS_Parameter60utOfRangeOK

ES_RS_Parameter60OutOfRangeNOK
Meaning: OutOfRangeOK (warning) —
The value of the specified parameter was
out of the recommended range (but
within the valid range) and accepted.
The command was executed.
OutOfRangeNOK (error) — The value of
the specified parameter was not within
the valid range and was not accepted.
The command was not executed.

These errors/warnings typically apply
to atmospheric values such as
temperature and pressure. The system
can still perform the requested action,
but the result will not be within
specifications.

In case of OutOfRangeOXK, the user
should be aware that the system might
not deliver highest accuracy.

ES_RS_WrongCurrentReflector

Meaning: An invalid reflector was set (e.g. if
the parameter of command SetReflector
applies to a non-existing reflector ID or to an
ID of an existing but inaccurate reflector.
Note: This is usually a programming error in
the application. The application should not
allow the user to set an invalid reflector. The
application should query the IDs of valid

97

reflectors with the command GetReflectors
and then offer these as possible parameters
for the SetReflector command.

ES RS NoCircleCenterFound

Meaning;: This error occurs only in the
continuous measurement mode,
CircleCenterMode. The calculation of the circle
center failed.

Note: The measurements represent either a
very small sector of the circle and/or describe
a circle not within the required accuracy,
which is not sufficient for calculation. The
Circle Center Mode parameters may not
have been set properly.

See command
'SetCircleCenterModeParams'.

ES_RS_NoSphereCenterFound

Meaning: Similar to
ES_RS_NoCircleCenterFound.

Note: The measurements represent a very
small sector of the sphere. For good results,
at least half of the sphere should be covered
by measurements. The Sphere Center Mode
parameters may not have been set properly
See command
'SetSphereCenterModeParams'.

ES RS NoTPFound

Meaning: There is no communication
between the tracker controller and the
tracker server. Either the connection is
broken or the tracker controller did not boot
and connect properly. Often this error occurs
if the application tries to access the tracker
server before the boot process is finished or if
the boot process failed for some reason.

For emScon version 1.5 and higher, it is
recommended to await the
ES_SSC_ServerStarted event before trying to
issue a command.

98

Note: This problem can occur with use of an
External Tracker Server (cable
unplugged/damaged, plugged to wrong
connector). This problem is minimized for
LT Controller plus/base since both the
tracker server and controller are integrated
in one unit.

ES RS NoWeathermonitorFound

Meaning: A command or polling mechanism
could not access an external weather station.
The weather station is not
present/connected/switched on.

Note: If there is a weather station connected,
check the cable and make sure the power is
switched on. If no weather station is
connected, set the SystemStatusFlag
HasWeatherMonitor to zero. (Command
SetSystemStatus). The flag must be # 0, in
order to access the weather station.

ES RS _NoLastMeasuredPoint

Meaning: This error occurs after a command
GoLastMeasuredPoint, when no stationary
point has been measured since last system
boot. There is no last measured point to go
to.

Note: Ensure that the user or the application
does not call GoLastMeasuredPoint, if no
stationary point has been measured since last
system boot.

ES RS NoVideoCamera

Meaning: A command could not access the
Overview Camera. This error can only occur
if no Overview Camera is attached to the
system.

Note: If no camera is connected, set the
SystemStatusFlag HasVideoCamera to zero.
(Command SetSystemStatus). The application
should not call camera related commands, if
there is no camera attached.

99

There exist different types of overview
cameras that differ in internal parameters
(focus distance, CCD chip size). Older
emScon versions were not able to detect
whether an overview camera was mounted
or not, not to speak of type recognition
(indeed it was the overview camera
hardware that did not support type
recognition). For that reason, the flag
'HasVideoCamera' was originally
introduced. Thus, the user had to 'tell' the
system when an overview camera was
mounted. Newer EmScon versions (2.0 and
up) are able to detect the camera type
automatically. Hence, this flag theoretically
has become obsolete. However, currently the
camera type is recognized only when the
'hHasVideoCamera' flag is enabled.

If your system is equipped with an overview
camera, it is highly recommended to always
having this flag checked (default is
unchecked). Otherwise, the system may not
detect the correct camera type and use
wrong (default) parameters.

However, wrong parameters do not cause
any fatal failures. The only effect will be that
the 'Find Reflector' feature by clicking to the
live video image by mouse pointer will move
the tracker inaccurately (typically, the tracker
will move double or half the amount of the
'clicked' distance).

ES_RS_NoAdm

Meaning: A command could not access the
absolute distance meter of the tracker. This
error should only occur if a tracker is not
equipped with an ADM (i.e. LT/AT- series
only).

Note: If this error occurs for LTD/AT
trackers, this probably indicates a hardware
failure.(Refer to Leica service).

100

ES RS NoNivel

Meaning: A command could not access the
external Leica 'Nivel' inclination sensor.
Either it is not present or not correctly
connected.

Note: If there is a 'Nivel' connected, check
the cable. If no 'Nivel' is present, set the
SystemStatusFlag HasNivel to zero
(Command SetSystemStatus). The flag must
be # 0, in order to access the 'Nivel'.

ES_RS_WrongTPFirmware

Meaning: The installed Firmware on the
Tracker controller does not match the actual
hardware.

Note: Upgrade the firmware (Refer to Leica
service)

ES RS DataBaseNotFound

Meaning: No database could be found on the
tracker server.

Note: There are no compensation parameters
found for the attached sensor. Send the
respective parameter files to the emScon
server using the transfer tool.

ES_RS_LicenseExpired

Meaning: The Copy- Protection Dongle has
expired (Probably due to a demo dongle?).
Note: Request for a dongle Field- upgrade at
Leica or get a new dongle.

ES_RS_UsageConflict

Meaning: Some system modes disable other
commands, because they do not make sense
in this context. For example, if the system is
equipped with a weather station and is set
up to automatically monitor the temperature,
pressure and humidity, the system will
prevent a manual setting of these values.
The command SetEnvironmentParams will
issue an error ES_RS_UsageContflict.

The command GetEnvironmentParams will

101

work and deliver the actual values measured
by the monitor. If the weather station mode
is set to 'read and recalculate Refraction’,
then the same applies to the command
SetRefractionParams. It will issue a
ES_RS_UsageConlflict, since setting the
refraction index manually would conflict the
automatic mechanism and would be
overwritten upon the next weather station
read cycle (~ 20 seconds).

Note: The application should not call
SetEnvironmentParams and/or
SetRefractionParams, if these values are
automatically updated by the weather
station, as per system settings.

ES RS Unknown

Meaning: An unknown error occurred.
Should never occur as a response to a
command.

ES_RS_NoDistanceSet

Meaning: The interferometer has no valid
reference distance. Measuring is not possible
in this condition.

Note: Trackers with ADM may attach to a
stable reflector anywhere. Use GoPosition or,
if close to a reflector, FindReflector. If 'Keep
last position is enabled’, the system tries to
re-establish the distance automatically as
soon as a reflector can be tracked. For
trackers without a ADM:

- Place the reflector in the Birdbath. Do a
GoBirdbath.

- Move reflector to the measuring position
without interrupting the beam.

ES RS NoTrackerConnected

Meaning: The connection between controller
and tracker is broken.

Note: Check all cables between controller
and tracker.

102

ES RS _TrackerNotlnitialized

Meaning: The tracker is not initialized.
Note: Execute the Initialize command. Set the
environmental parameters
(manually/weather station) before
initialization.

See also chapter 'Initial Steps'

ES RS ModuleNotStarted

ES RS ModuleTimedOut
ES_RS_ErrorReadingModuleDb

ES_RS_ErrorWritingModuleDb

Meaning: These errors indicate a software
installation problem on the emScon server.
Note: Reinstall emScon software.

ES_ RS NotInCameralPosition

Meaning: Application tried to grab a video
image from the Overview Camera, when the
tracker was not in camera position.

Note: Issue an ActivateCameraView command
first.

ES_RS_TPHasServiceFirmware

Meaning: The server has loaded service
firmware. This firmware is not suitable for
ordinary tracker usage. This error cannot
occur under normal conditions.

Note: Refer to Leica service.

ES_RS_TPExternalControl

Meaning: The controller is running under
external (e.g. AXYZ) control.

Note: Reboot the tracker processor.

ES_RS_NoSuchCompensation

Meaning: The ID of a non-existent
Compensation was passed to the
SetCompensation command.

Note: Use the GetCompensations command to
get a list of valid Compensations.

103

ES_RS_MeteoDataOutOfRange

Meaning: The current environmental
parameters (Temperature, Pressure,
Humidity) are out of range.

Note: Use SetEnvironmtalParams command to
set these parameters correctly. If a weather
station is attached, check for proper
functioning.

A Meteo station (Leica AT station or
Thommen station) must be connected to the
tracker system and switched-on before
booting emScon. Incorrect environmental
data may be produced, if the weather station
is connected/switched-on later than that. For
the Thommen station, connecting the
combined Temperature/Pressure device is
optional. However, if missing, the other
(small) Temperature device must be present
(applies to Thommen only - the AT station
contains an integrated air temperature
sensor). If no humidity device is available, a
default value of 70% is assumed (Thommen
only - AT station contains an integrated
humidity sensor). Note: Other than for
temperature and pressure, the influence of
the humidity to the refraction index is
marginal. See also
ES_RS_NoTemperatureFromWM,,
ES_RS_NoPressureFromWM,

and ES_RS_NoHumidityFromWM.

ES_RS_InCompensationMode

Meaning: The server is set to Compensation
Mode. This is the case when the
Compensation Application is active. During
this state, all TPI commands are locked.
Note: Quit the Compensation Application
(Web App).

Remark: In rare situations - for example after
a crash of the Compensation Application - it
may happen that the system remains in

104

compensation mode and the server can
neither be accessed by the TPI nor by the
Web Application. In this case, the tracker
server needs to be rebooted.

For further details see remark at chapter
'Application Initial Steps' / 'Essential Steps'.

ES RS _InternalProcessActive

Meaning: The server is still busy with a
command.

Note: The application must wait until the
previous command has finished, before
issuing a new command (asynchronous
behavior).

ES_RS_NoCopyProtectionDongleFound
Meaning: The copy protection dongle is
missing.

Note: Make sure the dongle is connected at
the correct port.

ES RS ModuleNotActivated

Meaning: The copy protection dongle does
not qualify to use the specified module.
Note: Refer to Leica representative to get a
dongle field- upgrade.

ES_RS_ModuleWrongVersion

Meaning: The copy protection dongle does
not qualify to use the specified module
version.

Note: Refer to Leica representative to get a
dongle field- upgrade.

ES_RS_DemoDongleExpired

Meaning: The dongle is not activated or has
expired.

Note: Refer to a Leica representative. A field
upgrade might be provided.

ES_RS_ParameterImportFromProbeFailed
Meaning: Importing of a probe
compensation failed.

Note: Make sure Probe has information in its

105

memory. Also check for potential version
conflict.

ES_RS_ParameterExportToProbeFailed
Meaning: Exporting of a probe
compensation failed.

Note: Check for potential version conflict.

ES_RS_TrkCompMeasCameraMismatch
Meaning: The selected Tracker
Compensation was not made with a T-Cam
mounted. This compensation must not be
used with a Tracker wit T-Cam mounted.
Note: Select a different compensation.

ES RS NoMeasurementCamera
Meaning: No T-Cam is available.
Note: Mount the T-Cam.

ES RS NoActiveMeasurementCamera
Meaning: The mounted T-Cam does not
match the one stored in the database.
Note: Make sure mounted T-Cam matches
the camera information stored in the
database.

ES RS NoMeasurementCamerasInDb
Meaning: No T-Cam is defined in database.
Note: Provide camera information in
database.

ES_RS_NoCameraToTrackerCompSet
Meaning: No T-Cam to tracker
compensation is activated.

Note: use the
'SetTCamToTrackerCompensation'
command to activate a compensation.

ES_RS_NoCameraToTrackerCompInDb
Meaning: No T-Cam to Tracker
compensation is available in database.
Note: Perform a T-Cam to Tracker
compensation.

ES_RS_WrongActiveCameraToTracker
CompInDb

106

Meaning: T-Cam to Tracker compensation
does not match the mounted camera.
Note: Use the correct camera, or provide a
compensation.

ES RS NoMeasurementProbe
Meaning: No probe can be 'seen' by the
camera.

Note: Move the probe to the camera's
viewing space.

ES RS NoActiveMeasurementProbe
Meaning: The detected probe cannot be set
as active.

Note: Make sure probe communication is OK
(cable problem?)

ES RS NoMeasurementProbesInDb
Meaning: No Probes are available in
database.

Note: Import probe information.

ES_RS_NoMeasurementProbeCompSet
Meaning: No probe compensation is
activated.

Note: use the 'SetProbeCompensation’
command to activate a compensation.

ES_RS_NoMeasurementProbeCompInDb
Meaning: No probe compensation can be
found in database.

Note: Import or provide a probe
compensation.

ES_RS_WrongActiveMeasurementProbe
CompInDb

Meaning: The probe seen by the camera does

not match the information in database.

Note: Replace the probe by the matching

one, or provide database information

suitable to active probe.

ES RS CommunicationWithMeasurement
ProbeFailed
Meaning: Possibly a hardware failure. The

107

probe should be detected automatically.
Note: Relocate the probe to try again. Try
with a cable connection if using a cordless
probe. Refer to Leica service if problem still
remains.

ES_RS_NoMeasurementTip
Meaning: No Tip is mounted at the probe.
Note: Mount a tip.

ES_RS_NoActiveMeasurementTip

Meaning: The detected Tip cannot be set as
active.

Note: Make sure probe communication is OK
(cable problem?)

ES_RS_NoMeasurementTipsInDb
Meaning: No Tips can be found in database.
Note: Provide tip definition.

ES_RS_NoMeasurementTipCompInDb
Meaning: No Tip compensation can be
found in database.

Note: Import or provide a tip compensation.

ES_RS_ProblemReadingCompensationDb
Meaning: Compensations could not be read
from database.

Note: Access to the database has failed. This
error should not occur under normal
conditions.

ES_RS_ProblemSettingTriggerSource
Meaning: Trigger source parameters could
not be set.

Note: Probably a hardware problem, or no
trigger board available with current system.

ES_RS_NoMeasurementTipCompSet
Meaning: Tip compensation missing.
Note: A Tip / Tip Assembly must be
compensated and activated before it can be
used for measuring.

ES_RS_ProblemStoringCameraToTracker
FactorySet

108

Meaning: The factory parameters of the
current camera could not be replicated in the
database.

Note: This error should not occur under
normal conditions.

ES RS ProblemWithCameralnternal
Calibration

Meaning: There is something wrong with

the internal camera calibration.

Note: This error should not occur under

normal conditions. The camera probably

needs to be repaired.

ES_RS_CommunicationWithMeasurement
CameraFailed

Meaning: Possibly a hardware failure. The

mounted camera should be detected

automatically.

Note: Remove the Camera and mount again.

If still a problem, refer to Leica service.

ES_RS_ProblemStoringProbeFactorySet
Meaning: The Factory parameters of the
current probe could not be stored in the
database.

Note: This error should not occur under
normal conditions.

ES_RS_NoDataToImport
Meaning: Import Data failed since no data to
import was found.

ES_RS_ProblemStoringTipAssembly
Meaning: Tip assembly could not be stored.
Note: This error should not occur under
normal conditions.

ES RS _6DModeNotAllowed

Meaning: Trying to execute a 6DoF related
command with a 3D measuring system, or

system is set to 3D Mode.

Note: Make sure the system supports 6DoF
(i.e. has a camera mounted) and that one of

109

the Probe (6DoF) measurement modes is
selected.

ES RS Bad6DResult

Meaning: The 6D coordinates delivered with
this packet are not complete or even wrong
(maybe zero). This situation can occur
because of a bad rotation status or because
not enough LED’s were visible during a
‘long time’. In other words: the system was
not able to measure as many single
measurements as specified during the
specified measurement-time. An application
must treat such a result as an error.

ES_RS_NoHumidityFromWM

Meaning: No humidity value could be
queried from the weather monitor.

If a Thommen station, there is probably no
(external) humidity sensor connected to the
weather station. This is a legal condition. A
default value of 70% is assumed in this case
(Note: The influence of the Humidity to the
refraction index is marginal).

The Leica AT meteo station contains a
humidity sensor as an integral part. It should
always succeed to deliver a humidity value.
NoHumidityFromWM would probably
mean defective meteo hardware.

ES_RS_NoTemperatureFromWM

Meaning: No temperature value could be
queried from the Weather monitor. None of
the two Temperature devices is probably
connected to the Thommen Weather Station.
This is a fatal error since the Temperature is
required for the calculation of the refraction
index. At least one of the Temperature
devices must be attached to the Thommen
Weather monitor. If both are connected, the
temperature of the combined
Temperature/Humidity device has priority.

110

The Leica AT meteo station contains a
TEMP1 sensor as an integral part. It should
always succeed to deliver an (air-)
temperature value.
NoTemperatureFromWM for an AT station
would probably mean defective hardware.

ES RS NoPressureFromWM

Meaning: No pressure value could be
queried from the Weather monitor. Since the
pressure device is an integral, non-
removable part of both, Thommen and AT
meteo station, this error probably indicates
defective hardware.

This is a fatal error since the Pressure is
required for the calculation of the refraction
index.

ES RS _6DMeasurementFace2NotAllowed
Meaning: The system is in Face II while
trying to do a 6D measurement.

The system does not allow performing 6D
measurements while in Face II. Change to
Face I first.

ES_RS_NoTriggerBoard

Meaning: A trigger- board specific command
was executed, although the system is not
equipped with a trigger board.

See "Tracker Trigger Interface' Appendix for
a more detailed description of trigger- issues.

ES_RS_InvalidInputData

Meaning: At least one of the input-
parameters of the executed command is not
valid. This error mostly applies if a
coordinate triple is given in the wrong CS-
type (for example if X,Y,Z passed where
H,V,D expected). This error is similar to
'ES_RS_WrongParameter...", but less specific
(since neither known which parameter, nor
whether only one is wrong or several)

111

ES_RS_NoMeasurementShankCompSet
Meaning: If we are in 'Shank' mode,
measurements without shank compensation
are not allowed

ES_RS_NoValidADMCompensation
Meaning: The issued command is not
available without having a valid ADM
compensation; import or perform a
mechanical tracker compensation

ES RS PressureSensorl’roblem

Meaning: The meteo station reported a
discrepancy in terms of a too big difference
from the 2 internal sensors. This only applies
to new AT meteo station- types.

ES_RS_MeasurementStatusNotReady
Meaning: Tried to trigger a measurement
while measurement status was not (yet)
ready.

Remark: Error Range 100..9999 is reserved for
Controller/Sensor Firmware errors (as listed in
Appendices C and D), hence the gap between

error #99 and #10001.

ES MeasMode

This enumeration type names the currently

implemented measurement modes. Used as a
parameter for the ES_C_SetMeasurementMode

command.
enum ES_MeasMode

{

ES_MM_Stationary,
ES_MM_ContinuousTime,
ES_MM_ContinuousDistance,
ES_MM_Grid,
ES_MM_SphereCenter,
ES_MM_CircleCenter,
ES_MM_6DStationary,
ES_MM_6DContinuousTime,
ES_MM_6DContinuousDistance,
ES_MM_6DGrid,
ES_MM_6DSphereCenter,
ES_MM_6DCircleCenter,

ES_MM_Stationary
Stationary measurement mode. Also known
as 'Single Point' measurement, where the

112

target is stationary.

A stationary measurement is an average
value of many tracker measurements. The
parameters for a stationary measurement,
number of measurements and the time span
can be controlled with the
ES_C_SetStationaryModeParams command.

ES_MM_ContinuousTime

Continuous measurement mode with a time
interval. a measurement is triggered after
the time interval. The behavior of a
continuous measurement can be controlled
with the
ES_C_SetContinuousTimeModeParams
command.

ES_MM_ContinuousDistance
Continuous Measurement mode with a
distance interval. A measurement is
triggered after the distance interval. The
behavior of a Continuous Distance
measurement can be controlled with the
ES_C_SetContinuousDistanceModeParams
command.

ES_MM_Grid

Continuous Measurement Mode by grid
interval. A measurement is triggered after
the grid interval. The behavior of a grid
measurement can be controlled with the

ES _C_SetGridModeParams command.

ES_MM_SphereCenter

Measurement mode to indirectly measure a
sphere center point. This is achieved by a
continuous measurement scan over the
sphere surface. The behavior for a Sphere
Center measurement can be controlled with
the ES_C_SetSphereCenterModeParams
command.

ES_MM_CircleCenter
Circle measurement similar to

113

ES_MM_SphereCenter. The behavior for a
Circle Center measurement can be controlled
with the ES_C_SetCircleCenterModeParams
command.

e ES_MM_6DStationary

The Probe (6DoF) relative of
ES_MM_Stationary mode. See description
there.

e ES MM 6DContinuousTime
The Probe (6DoF) relative of
ES MM_ContinuousTime mode. See
description there.

e ES MM 6DContinuousDistance
The Probe (6DoF) relative of
ES_MM_ContinuousDistance mode. See
description there.

e ES_MM_6DGrid
The Probe (6DoF) relative of ES_MM_ Grid
mode. See description there.

e ES MM_6DSphereCenter
The Probe (6DoF) relative of
ES_MM_SphereCenter mode. See
description there.

e ES MM 6DCircleCenter
The Probe (6DoF) relative of
ES_MM_CircleCenter mode. See description
there.

ES_MeasurementStatus

Additional status information to be delivered
with each single measurement of a continuous
measurement stream.

Measurements with a status other than

ES MS_ AIlIOK should be treated with care.

114

enum ES_MeasurementStatus

{
ES_MS_AILIOK,

ES_MS_SpeedWarning,
ES_MS_SpeedExeeded,
ES_MS_PrismError,
ES_MS_TriggerTimeViolation,

e ES MS AIIOK
Measurement was carried out within
specified target speed (movement).

e ES_MS_SpeedWarning
Measurement was taken, when target was
moving with a speed above warning

threshold.

e ES MS_SpeedExeeded
Measurement was taken when target was
moving with a speed above limit.

e ES _MS PrismError
Measurement could not be taken due to a
prism error. Reflection is probably too weak.

e ES_MS_TriggerTimeViolation
Those measurements marked with
‘TriggerTimeViolation’ in a (trigger
controlled) stream could not be taken in
exact coincidence with the trigger pulse.
This situation can occur if the trigger pulse
rate is very close to the maximum
measurement rate.
If it is even beyond the maximum
measurement rate, probably all of the
measurements will be marked with
‘TriggerTimeViolation’.

ES_TargetType

This enumeration type names the known target
types (prism types). It is used as one of the
ES_C_SetSystemSettings command parameters.

115

enum ES_TargetType

{

ES_TT_Unknown,
ES_TT_CornerCube,
ES_TT_CatsEye,

ES TT_GlassPrisnm,
ES_TT_RFIPrism,

ES TT Unknown
The target type is unknown.

ES_TT CornerCube
The target is a corner-cube reflector.

ES_TT_CatsEye
The target is a cats eye reflector.

ES TT GlassPrism
The target is a glass prism reflector.

ES_TT_RFIPrism
The target is an RFI (Reflector for fixed
installations) reflector.

ES TrackerTemperatureRange

The ambient temperature range for the laser

tracker.
enum ES_TrackerTemperatureRange

ES_TR_Low,
ES_TR_Medium,
ES_TR_High,
ES_TR_Automatic,

ES TR_Low
Ambient temperatures between 5 and 20 °C.

ES TR _Medium
Ambient temperatures between 10 and 30 °C.

ES_TR_High
Ambient temperatures between 20 and 40 °C.

ES_TR_Automatic

This value applies to new AT series trackers
only. AT trackers no longer require manual
selection of temperature range. Their only
valid setting is ES_ TR_Automatic (which is
set by default). Other settings will be rejected
with a 'wrong parameter' error.

On the other hand, ES_TR_Automatic will be
rejected for older, non-AT tracker types.

116

ES CoordinateSystemType
Coordinate system types supported by the TPI:

enum ES_CoordinateSystemType
{

ES_CS_RHR,
ES_CS_LHRX,
ES_CS_LHRY,
ES CS LHRZ,
ES_CS_ccw,
ES_CS_ccc,
ES_CS_scw,
ES CS_SCC

e ES_CS_RHR
Right-Handed Rectangular (default type)

+Z
A P(x, y, z)

117

ES_CS_LHRX
Left-Handed Rectangular. Achieved by
changing the sign of the X-axis.

P(x, y, 2)
Y -
:
|
|

118

ES_CS_LHRY
Left-Handed Rectangular. Achieved by
changing the sign of the Y-axis.

119

ES_CS_LHRZ
Left-Handed Rectangular. Achieved by
changing the sign of the Z-axis.

+X

P(x, y, 2)

120

e ES CS_CCW

Cylindrical Clockwise system.

P(R, < H, z)

121

e ES CS_CCC

Cylindrical Counter-Clockwise system.

P(R,<H, z)

122

e ES_CS_SCW

Spherical Clockwise system.

P(<H,<V,D) 4

123

ES_CS_SCC
Spherical Counter-Clockwise system.

-
P(<H,<V,D) |

124

00

Addendum: Probe Coordinate Systems

T-Probe:

These Pictures relate to RHR CS- Type.

Further details about Probe Coordinate Systems
see Chapter 9: Mathematics (Chapter 9.3 in
particular)

125

ES_LengthUnit

Length units supported by the TPI. This

enumeration type isused as a parameter for
ES C _SetUnits/ES_C_GetUnits.

enum ES_LengthUnit

ES_LU_Meter,
ES LU_Millimeter,
ES_LU_Micron,
ES_LU_Foot,

ES LU_Yard,

ES_LU_Inch
};
ES_AngleUnit

Angle units supported by TPI. This enumeration
type is used as a parameter for
ES C _SetUnits/ES_C_GetUnits.

enum ES_AngleUnit
ES_AU_Radian,

ES_AU_Degree,
ES_AU_Gon

ES TemperatureUnit

Temperature units supported by TPI. This
enumeration type is used as a parameter for
ES_C_SetUnits/ES_C_GetUnits.

enum ES_TemperatureUnit

ES_TU_Celsius,
ES_TU_Fahrenheit

¥

ES_PressureUnit

Pressure units supported by the TPI. This
enumeration type is used as a parameter for
ES _C _SetUnits/ES_C_GetUnits.

enum ES_PressureUnit
{

ES_PU_Mbar, //default
ES_PU_HPascal, //same as MBar
ES_PU_KPascal,

ES_PU_MmHg,
InH20,
InHg,

ES_PU
ES_PU

e ES PU Mbar
Millibar

e ES_PU_Hpascal
HectoPascal (= Millibar)

126

e ES_PU_Kpascal
KiloPascal

e ES_PU_MmHg
Millimeter Mercury

e ES PU_Ps
Pounds per Inch

e ES PU InH20
Inch Water Height

e ES PU_InHg
Inch Mercury

ES_HumidityUnit

Humidity units supported by the TPI. This
enumeration type is used as parameter for
ES C_SetUnits/ES_C_GetUnits.

enum ES_HumidityUnit

ES_HU_RH
};

e ES HU RH
Relative humidity, which is expressed in
percentage.

ES TrackerStatus

This enumeration type names the possible tracker
states. It is used as the ES_C_GetTrackerStatus
command parameter. The Tracker Status is
related to the LED indicator on the tracker head.

enum ES_TrackerStatus

ES_TS_NotReady,
ES_TS_Busy,
ES_TS_Ready,
ES_TS_6Dstatuslnvalid,

e ES_TS_NotReady
Tracker not ready; currently not attached to a
target.

e ES_TS_Busy
Tracker is currently measuring,.

e ES_TS_Ready
Tracker attached to a target and is ready to
measure.

127

e ES TS 6DStatusInvalid
6D status of T-Probe measurement is not
valid

ES ADMStatus

Additional information about the ADM of the
laser tracker. This enumeration type is used as a
parameter for ES_C_GetSystemStatus.

enum ES_ADMStatus

{
ES_AS_NOADM,
ES_AS_ADMCommFailed,
ES_AS_ADMReady,
ES_AS_ADMBusy,
ES_AS_HWError,
ES_AS_SecuritylLockActive,
ES_AS_NotCompensated,

};

e ES_AS_NoADM
Tracker not equipped with an ADM.

e ES AS ADMCommbFailed
Communication with ADM failed.

e ES_AS_ADMReady
ADM is ready to measure.

e ES_AS_ADMBusy
ADM is busy (performing a measurement).

e ES_AS HWError
Unspecified hardware error

e ES_AS_SecurityLockActive
ADM has been locked for security because
maximal allowed laser intensity has
exceeded. Try to recover with powering
off/on the controller. If problem persists,
refer to Leica service.

e ES_AS_NotCompensated
The ADM is not compensated and, if at all,
may deliver inaccurate distances.

ES NivelStatus

Additional information about the Leica 'Nivel'
sensor connected to the laser tracker. This
enumeration type is used as a result parameter
for ES_C_StartNivelMeasurement.

128

Note: Nivel - Sensors of type 230 (newer models)
have a smaller (highest accuracy) range of +/-1.1
mrad. The highest accuracy range of older
models (Type Nivel20) is +/-1.5 mrad. Values that
apply to Nivel 230 types are shown in brackets []
in the description below.

enum ES_NivelStatus

ES_NS_AII0K,
ES_NS_OutOfRangeOK,
ES_NS_OutOfRangeNOK,
ES_NS_NoNivel,

e ES NS NoNivel
No 'Nivel' inclination sensor
found/connected to tracker.

e ES_NS_AIIOK
'Nivel' measurement OK. The range of the
measurement rx/ry values is within +/- 1.5
[1.1] millirad. Applications should only rely
on measurement- values marked with
ES_NS_AIIOK.

e ES_NS_OutOfRangeOK
Result within measurement range, but
warning threshold exceeded. This warning
applies when the range of at least one
measurement value is within +/- 1.5 [1.1] and
2.0 millirad.
Since it is not recommended to use these
values, emScon maps them to a constant
value of +/- 2.0 mrad. In other words, only
the sign is reliable under this condition!

e ES_NS_OutOfRangeNOK
No measurement could be taken; out of
range. This error applies when at least one
measurement value exceeds +/- 2.0 millirad.

These tolerance- thresholds 1.5 [1.1] /2.0 millirad
are invariable characteristics of the 'Nivel'
hardware. Please refer to the Nivel 20 Instruction
Manual, Page 7.

129

ES_NivelPosition

Positions during orient to gravity procedure. This
enumeration type is used as a parameter for

ES_C_GoNivelPosition command.
enum ES_NivelPosition

ES_NP_Pos1,
ES_NP_Pos2,
ES_NP_Pos3,
ES _NP_Pos4,

e ES NP Posl
Tracker head at Nivel position 1 (90 degrees).

e ES NP Pos2
Tracker head at Nivel position 2 (180
degrees).

e ES NP Pos3
Tracker head at Nivel position 3 (270
degrees).

e ES NP Pos4
Tracker head at Nivel position 4 (360
degrees).

ES_WeatherMonitorStatus

Specifies status of the weather monitor. This
enumeration type is used as a parameter for
ES_C_SetSystemSettings and
ES_C_GetSystemStatus commands. The Tracker
server maintains one single set of current
environmental parameters — temperature,
pressure and humidity. The command
ES_C_GetEnvironmentParams queries current
parameters. Parameters are set with

explicit/implicit methods.
enum ES_WeatherMonitorStatus

ES_WMS_NotConnected,

ES_WMS_ReadOnly,

ES_WMS_ReadAndCalculateRefractions,

};

e ES WMS_ NotConnected
There is no weather monitor connected to
the system, or it is switched off. The
application must use

ES_C_SetEnvironmentParams to set the

130

environment parameters (explicit method).
SetEnvironmentParams also updates the
refraction parameters. Therefore, it is not
necessary to use
‘ES_C_SetRefractionParams’. If

ES C_SetRefractionParams is called
anyway, the refraction parameters are
updated with the values provided,
however, the next call to
ES_C_SetEnvironmentParams will
overwrite these values again.

ES_WMS_ReadOnly

While in this mode, if weather monitor is
connected and correctly working, the
system automatically reads the
environmental values periodically (~ 20
seconds) from the monitor and internally
updates the current environment
parameters (implicit method). Error events
repeatedly occur if no values can be read
(weather monitor switched off, or cable
connection broken).

The 'ES_C_GetEnvironmentParams'
command can be used to retrieve the
current values (Note: this command does
not immediately trigger a measurement
from the weather monitor — it just returns
the emScon- internally buffered meteo
values, i.e. those last read from the WM)),
while the command
'ES_C_SetEnvironmentParams' is not
available in this mode (Returns with an
‘usage conflict’ error).

Refraction parameters are not influenced by
the periodical update of environmental
parameters. To change refraction values, an
explicit 'ES_C_SetRefractionParams' is
required. The 'ES_WMS_ReadOnly' mode is
therefore suitable if the environmental

131

values come from the WM, but the
application wants to use its own formula to
calculate refraction parameters from these
values. The mode of operation is hence as
follows:

- ES_C_GetEnvironmentParams:
delivers values last read from weather
monitor.

- Calculate ADM and IFM refraction
indices with application-specific
formula.

- Set the calculated refraction
parameters with
ES_C_SetRefractionParams.

This mode is therefore rarely used. The normal
mode of operation is to use

'ES_WMS_Read AndCalculateRefractions' (see
below).

e ES WMS ReadAndCalculateRefractions
This is the normal mode of operation if
using a weather monitor. It acts the same as
the 'ES_WMS_ReadOnly' mode, but in
addition, the current refraction parameters
are automatically recalculated and updated.
The 'ES_C_GetEnvironmentParams' and
'ES_C_GetRefractionParams' commands
can be used to retrieve the current values,
while the 'ES_C_SetEnvironmentParams'
and 'ES_C_SetRefractionParams' both are
not available in this mode (would return
with an ‘usage conflict” error).

Attention: The weather monitor should be
switched-on before starting the emScon server.
The weather monitor requires some initialization-

132

time after switching on. If values are queried
during this initialization phase, wrong values
may be returned and the weather monitor
remains in indifferent state. This is due to a
problem of the weather monitor hardware. It is
recommended to remove the battery from the
weather monitor and always enable its power
supply before, or at the same time, the emScon
server gets booted.

New behavior with emScon 3.0:

With emScon 3.0, there is an automatic
recognition of any attached meteo station and the
system will automatically set related flags to a
most common and reasonable state.

See chapter Automatic External Device
Recognition (under Section 2.4) for more details.

ES RegionType

This enumeration type is used as a parameter for

regions .
enum ES_RegionType

ES _RT_Sphere,
ES_RT_Box,
};

e ES_RT Sphere
Region type is a sphere.

e ES RT Box
Region Type is a box.

ES TrackerProcessorStatus

The sequence of this enum is important. It shows
the state of the tracker processor during startup
of the Tracker Server. The value issued describes
the status of the startup procedure.

- The tracker can only be booted if there is a
connection to emScon.

- It can have a valid compensation only if it is
booted.

133

- It can be initialized only if it has a valid
compensation.

- The tracker is ready only if it is initialized.

This enumeration type is used as a parameter of
ES_C_GetSystemStatus.

enum ES_TrackerProcessorStatus

ES_TPS_NoTPFound,

ES_TPS_TPFound,

ES_TPS_NBOpen,
ES_TPS Booted,

ES_TPS_CompensationSet,
ES_TPS_Initialized,

e ES TPS NoTPFound
No Tracker Processor could be recognized.

e ES TPS TPFound
Tracker Processor is recognized, but
connection from processor to tracker failed.

e ES_TPS_NBOpen
Connection from processor to tracker is
established, but booting failed.

e ES TPS Booted
Tracker Processor booted, but there is no
valid compensation.

e ES_TPS_CompensationSet
Compensation set available, tracker not yet
initialized.

e ES TPS_Initialized
Initialization was OK; tracker is ready.

ES_LaserProcessorStatus

Additional information about the laser processor.
This enumeration type is used as a parameter for
ES_C_GetSystemStatus.

enum ES_LaserProcessorStatus
{

ES _LPS_LCPCommFailed,

ES_LPS_LCPNotAvail,
ES_LPS_LaserHeatingUp,
ES_LPS_LaserReady,
ES_LPS_UnableToStabilize,
ES_LPS_LaserOff

e ES LPS LCPCommkFailed
Communication to laser processor failed.

134

This indicates a hardware problem. Report to
Leica service representative.

ES_LPS_LCPNotAuvail

The Laser processor is not available. This
indicates a hardware problem. Report to
Leica service representative.

ES_LPS_LaserHeatingUp

Laser is warming up. This is the normal case
after switching-on the laser / controller (takes
about 20 minutes).

ES_LPS_LaserReady

Laser is ready. From now on, the tracker can
be used, but first needs to be initialized. See
chapter 'Application Initial Steps'.

Note: There is an alternative of repeatedly
polling with 'ES_C_GetSystemStatus' to
tigure out whether the laser is ready. As
soon as the laser is ready, emScon issues a
so- called ‘SystemStatusChange” event. This
is a packet of the type
'ES_DT_SystemStatusChange', containing a
status parameter. In case of laser ready, this
parameter is 'ES_SSC_LaserWarmedUp'.

ES_LPS UnableToStabilize

Laser not able to stabilize. This probably
indicates a rapidly changing (up and down)
of the environment temperature or a wrong
active Temperature Range. Make sure the
tracker is used in an environment with stable
temperature. This rarely happens. Usually
the laser just takes a longer warm up phase if
environment temperature is not that stable.

ES_LPS_LaserOff
The Laser is switched off. Use
‘ES_SwitchLaser’ to switch laser on.

135

ES_SystemStatusChange

Specifies status change types. This enumeration
type is used as a parameter for
ES_DT_SystemStatusChange notifications.

136

enum ES_SystemStatusChange

{

ES_SSC_DistanceSet,
ES_SSC_LaserWarmedUp,
ES_SSC_EnvironmentParamsChanged,
ES_SSC_RefractionParamsChanged,
ES_SSC_SearchParamsChanged,
ES_SSC_AdmParamsChanged,
ES_SSC_UnitsChanged,
ES_SSC_ReflectorChanged,
ES_SSC_SystemSettingsChanged,
ES_SSC_TemperatureRangeChanged,
ES_SSC_CameraParamsChanged,
ES_SSC_CompensationChanged,
ES_SSC_CoordinateSystemTypeChanged,
ES_SSC_BoxRegionParamsChanged,
ES_SSC_SphereRegionParamsChanged,
ES_SSC_StationOrientationParamsChanged,
ES_SSC_TransformationParamsChanged,
ES_SSC_MeasurementModeChanged,
ES_SSC_StationaryModeParamsChanged,
ES_SSC_ContinuousTimeModeParamsChanged,
ES_SSC_ContinuousDistanceModeParamsChanged,
ES_SSC_GridModeParamsChanged,
ES_SSC_CircleCenterModeParamsChanged,
ES_SSC_SphereCenterModeParamsChanged,
ES_SSC_StatisticModeChanged,
ES_SSC_MeasStatus_NotReady,
ES_SSC_MeasStatus_Busy,
ES_SSC_MeasStatus_Ready,
ES_SSC_MeasurementCountReached,
ES_SSC_TriggerSourceChanged,
ES_SSC_IsFacel,

ES_SSC_IsFace2,
ES_SSC_ExternalControlActive,
ES_SSC_ServiceSoftwareActive,
ES_SSC_MeasurementCameraChanged,
ES_SSC_MeasurementCameraModeChanged,
ES_SSC_ProbeChanged,

ES_SSC_TipChanged,
ES_SSC_TCamToTrackerCompensationChanged,
ES_SSC_ProbeCompensationChanged,
ES_SSC_TipToProbeCompensationChanged,
ES_SSC_ExternTriggerParamsChanged,
ES_SSC_TCamToTrackerCompensationDeleted,
ES_SSC_MeasurementProbeCompensationDeleted,
ES_SSC_MeasurementTipCompensationDeleted,
ES_SSC_ManyMechanicalCompensationsInDB,
ES_SSC_MeasStatus_6Dstatuslnvalid,
ES_SSC_MeasurementProbeButtonDown,
ES_SSC_MeasurementProbeButtonUp,
ES_SSC_ExternalTriggerEvent,
ES_SSC_ExternalTriggerStartEvent,
ES_SSC_ExternalTriggerStopEvent,
ES_SSC_ObjectTemperatureChanged,
ES_SSC_OverviewCameraChanged,
ES_SSC_NivelSensorChanged,
ES_SSC_ProbeButtonlDown,
ES_SSC_ProbeButtonlUp,
ES_SSC_ProbeButtonlDoubleClick, // not supported
ES_SSC_ProbeButton2Down,
ES_SSC_ProbeButton2Up,
ES_SSC_ProbeButton2DoubleClick, // not supported
ES_SSC_ProbeButton3Down,
ES_SSC_ProbeButton3Up,
ES_SSC_ProbeButton3DoubleClick, // not supported
ES_SSC_ProbeButton4Down,
ES_SSC_ProbeButton4Up,
ES_SSC_ProbeButton4DoubleClick, // not supported
ES_SSC_QuickReleaseOpend,
ES_SSC_QuickReleaseClosed,
ES_SSC_LaserReachingLimit,
ES_SSC_LaserNotStabilized,
ES_SSC_CompensationModeStart,
ES_SSC_CompensationModeEnd,
ES_SSC_EmsysFileslmported,
ES_SSC_CopyProtectionRemoved,
ES_SSC_TPConnectionClosing,
ES_SSC_ServerClosing,
ES_SSC_ServerStarted,

ES SSC_DistanceSet
Precondition is that the system is equipped
with an ADM and is set to

137

‘KeepLastPosition” (one of the parameters
controlled by Set/GetSystemSettings). This
event is fired as soon as the beam is (re-)
locked on to the target and an ADM
measurement has been performed (a few
seconds after the target has been placed to a
stable position while beam attached). From
now on, measurements can be continued.
This mode is very convenient since it is not
necessary to go back to the BirdBath after a
beam break.

For Probe (6DoF) measurements, the
‘KeepLastPosition” flag MUST always be set
as true!

The 'ES_SCC_DistanceSet' event is not fired
when the system flag 'Keep Last Position’ is
not set.

ES_SSC_LaserWarmedUp

This event is fired once the tracker is
warmed up (after system / laser start, about
20 minutes after the laser was switched on).
Also see description of enum
'ES_LaserProcessorStatus'. The laser
processor status (warmed up or not) can also
be queried in an active way (polling) by
using 'ES_C_GetSystemStatus'.

ES_SSC_XXX_Changed

These events are fired whenever there is a
change of one of the system settings
(Parameters, Modes, Regions,
Compensations) or Hardware (those
detected automatically, such as TCam, Probe,

Tip).
ES_SSC_MeasStatus_NotReady
ES_SSC_MeasStatus_Busy

ES_SSC_MeasStatus_Ready

This event informs about a Measurement
Status change (Ready, Busy, Not Ready).
Apart from evaluating these events, the

138

measurement status can also be asked
actively with the command
"ES_C_GetTrackerStatus’. This information is
typically used for user- interface purpose to
implement a ‘traffic-light” with green (ready)
/ yellow (busy measuring) /red (target lost or
missing compensation) colors.

ES _SSC_MeasStatus_6DStatusInvalid

Same comments as above. But only applies
to probe measurements. Tracking is still OK,
but the tilt of the probe is out of range so the
TCam cannot reliably determine the rotation
parameters. The rotation angles are not
accurate and thus, the tip- coordinates not
reliable. The recommended UI- color to
assign to this status is blue (Used in BUI/
Compensation module).

ES_SSC_MeasurementCountReached
Stop a continuous measurement, when the
max. number of measurements are reached.

ES_SSC_IsFacel
This event is fired whenever the tracker
changes to Face L.

ES_SSC_IsFace?2
This event is fired whenever the tracker
changes to Face II.

ES_SSC_ExternalControl Active

This event is fired whenever the tracker
server enters external control (e.g. Axyz).
While under external control, control
through TPl commands are blocked.

ES_SSC_ServiceSoftwareActive

This event is fired whenever the tracker
server runs with service software. While
running service software, control through
TPI commands is limited.

139

ES_SSC_TcamToTrackerCompensation
Deleted

ES_SSC_MeasurementProbeCompensation
Deleted

ES_SSC_MeasurementTipCompensation
Deleted
Above three events inform about
compensation deletion.

ES_SSC_ManyMechanical Compensations
InDB

The recommended maximal number of
mechanical compensations has been
reached. Please delete some older
compensations.

ES _SSC_MeasurementProbeButtonDown
This event is fired whenever one of the
probe buttons (measurement trigger) is
pressed.

Exception: The system parameter
'ES_SP_ProbeConfig_Button' is set to
'ES_PCB_4ButtonMode'.

ES_SSC_MeasurementProbeButtonlUp

This event is fired whenever the previously
pressed probe button is released.
Exception: The system parameter
'ES_SP_ProbeConfig_Button' is set to
'ES_PCB_4ButtonMode'.

ES_SSC_ExternalTriggerEvent
This event is fired whenever an external
Trigger Pulse occurs.

ES_SSC_ExternalTriggerStartEvent

This event is fired whenever an external
Trigger Start Pulse (trigger signal rising
flank) occurs.

ES_SSC_ExternalTriggerStopEvent
This event is fired whenever an external

140

Trigger Stop Pulse (trigger signal falling
flank) occurs.

ES_SSC_ObjectTemperatureChanged

This event is fired when the object
temperature has changed more than the
tolerance value (since the last time this
event was fired). The object temperature
tolerance value is a System Parameter and
must be set as
'ES_SP_D_ObjectTemperatureTolerance', by
using the 'SetDoubleSystemParamter’
command).

See also description of
'ES_C_GetObjectTemperature' command.
The hardware configuration issues
described there also apply here.

ES_SSC_OwverviewCameraChanged

This event is fired when an overview
camera either gets removed or mounted to
a tracker. An application then can use the
'GetOverviewCameralnfo' command to get
further information. Note: older hardware
may not support this feature.

ES_SSC_NivelSensorChanged

This event is fired when a 'Nivel'
(inclination Sensor) either gets removed or
mounted to a tracker. Note: older hardware
may not support this feature.

ES _SSC_ProbeButton1Down
ES_SSC_ProbeButton1Up
ES _SSC_ProbeButton2Down
ES_SSC_ProbeButton2Up
ES_SSC_ProbeButton3Down
ES_SSC_ProbeButton3Up
ES _SSC_ProbeButton4Down
ES_SSC_ProbeButton4Up

141

The Probe button interface has been
improved with emScon V2.3 in terms than
each one of the 4 buttons can be addressed
individually. This feature is disabled by
default in order to keep compatibility with
existing applications. To enable, set the
system parameter
'ES_SP_ProbeConfig_Button' to
'ES_PCB_4ButtonMode' by using the
'SetLongSystemParameter' command.

The application will then get individual
events for each button as listed above
instead of the ordinary
MeasurementProbeButtonDown/Up events.

ES_SSC_ProbeButton1DoubleClick
ES_SSC_ProbeButton2DoubleClick
ES_SSC_ProbeButton3DoubleClick

ES _SSC_ProbeButton4dDoubleClick
Double Clicks are not supported with
current Probe Firmware revision.

ES_SSC_QuickReleaseOpend

Indicates an opening of the quick release.
This event only applies to new AT series
trackers.

ES_SSC_QuickReleaseClosed

Indicates closing of quick release.

This event only applies to new AT series
trackers.

ES_SSC_LaserReachingLimit

Indicates the laser is about to reach the limit
of a temperature range. If this event is
ignored, a LaserNotStabilized event may
follow soon. This will then require to pause
a few minutes with measuring until the
laser is ready again. Alternatively, you may
perform an initialize upon a
'LaserReachingLimit' event.

See also enum

142

'ES_TrackerTemperatureRange'.
This event only applies to new AT series
trackers.

ES _SSC_LaserNotStabilized

This event is issued when the laser has
(automatically) changed temperature range
(which should have preceeded by a
'LaserReachingLimit' event). Must wait a
few minutes until laser is ready again.
Alternatively, an 'Initialize' command can
be issued (recommended).

See also See also enum
'ES_TrackerTemperatureRange'.

This event only applies to new AT series
trackers.

E_SSC_CompensationModeStart

This event is fired when the system enters
compensation mode. While the system is in
compensation mode, ordinary commands
are blocked and will return with a 'System
is in compensation mode' error. Setting the
compensation mode is not a public TPI
command and therefore not under control
of the application programmer. However, if
the compensation BUI is running or
launched besides an application, it might be
useful to the application to know when the
system is in / enters / leaves compensation
mode.

This is an advanced programming issue.

ES_SSC_CompensationModeEnd

This event is fired when the system leaves
compensation mode. All ordinary TPI
commands are available again. This is an
advanced programming issue.

ES_SSC_EmsysFilesImported
This event is fired when a data- import has
completed (For example sending

143

compensation data (.emsys files) to the
server on using the transfer- client tool).

e ES_SSC_CopyProtectionRemoved
This event is fired if the copy protection
device (dongle) is removed. System control
through TPl commands is locked.

e ES_SSC_TPConnectionClosing
This event is fired if the server connection
gets lost. Server control through TPI
commands is no longer possible. Server
probably needs a reboot.

e ES_SSC_ServerClosing
This event is fired if the server software
terminates gracefully while the connection
is still established. Upon a server crash, this
event cannot be expected.

e ES SSC_ServerStarted,
This event is fired if the server is has re-

started (supposed the connection was still
established).

ES_StatisticMode

Specifies the current statistical mode. This
enumeration type is used as a parameter for the
ES _C_SetStatisticMode command.

enum ES_StatisticMode
ES_SM_Standard,
ES_SM_Extended
};
e ES SM_Standard
This is the default. Single- and Multi-
measurement results are provided with
reduced statistical information (without
covariance values). That is, the data
structures SingleMeasResultT and
MultiMeasResultT are used and are
compatible with the structures used in earlier

emScon versions.

144

e ES SM Extended
Single- and Multi- measurement results are
provided with enhanced statistical
information (including covariance values).
While this mode is activated, the data
structures SingleMeasResult2T and
MultiMeasResult2T are used. The only
difference is that these 2'- versions contain
extended (statistical) information.
Applications passing measurements to the
'CallTransformation' command should use
the 2'- variants since the transformation
routine requires these extended statistics.
To maintain compatibility with earlier
versions, Single/MultiMeasResultT have not
been extended with additional parameters.
Newer application should always use the
Extended mode and therefore use all the “2’-
version structures / handlers.

ES_StilllmageFileType

Specifies the format of the still image. This
enumeration type is used as a parameter for the
ES_C_GetStilllmage command.

enum ES_StilllmageFileType

ES_SI_Bitmap,
ES_SI_Jpeg

}:

e ES_SI Bitmap

The image arrives in Bitmap format
e ES_SI Jpeg

The image arrives in Jpeg format.

This format is not supported.

ES TransResultType

Specifies the type of the Transformation
Parameters. Depending on this setting, the
transformation routine will provide the 7 result
parameters in ‘inverse” order. This enumeration
type is used as a parameter for the

145

ES_C_Set/GetTransformationInputParams

command.
enum ES_TransResultType

ES_TR_AsTransformation,
ES_TR_AsOrientation

};

e ES_TR_AsTransformation
The 7 parameters are provided to be used for
a transformation from local to object
(nominal) coordinate system.

e ES TR_AsOrientation
The 7 parameters are provided to be used as
orientation parameters
(ES_C_SetOrientationParameters).

ES_TrackerProcessorType

Specifies the controller type of the Tracker
Processor in use (SMART, Embedded

[LTController plus/base] etc.). ATC900 applies to

new controller for AT series trackers.
enum ES_TrackerProcessorType

{
ES_TT_Undefined,

ES_TT_SMART310,

ES TT_LT Controller,
ES_TT_EmbeddedController,
ES_TT_EmbeddedController600,
ES_TT_ATC900,

ES_TPMicroProcessorType

Specifies the microprocessor type of the Tracker
Processor in use (1486, 686 etc.).

enum ES_TPMicroProcessorType
ES_TPM_Undefined,
ES_TPM_1i486,
ES_TPM_686

}:

ES_LTSensorType

Specifies the type of sensors that are defined
(LT300, LTD800, AT901-LR etc.).

146

enum ES_LTSensorType
{
ES_LTS Undefined,
ES_ LTS _SMARTOptodyne,
ES LTS SMARTLeica,
ES LTS LT D 500,
ES LTS LT300,
ES LTS LT301,
ES LTS LT D_800,
ES LTS LT D 700,
ES LTS LT D 600,
ES LTS LT _D 640,
ES LTS LT D_706,
ES LTS LT D 709,
ES LTS LT D 840,
ES_LTS_AT901_B,

ES_LTS_AT901 MR,

ES_LTS AT901 LR,

ES_LTS NoSensor,

ES DisplayCoordinateConversionType

Specifies the conversion of the coordinate system,
either base to current or vice versa. Do not use
this type. It is related to the
'ConvertDisplayCoordinates' command (not
supported)

enum ES_DisplayCoordinateConversionType

ES_DCC_BaseToCurrent,
ES_DCC_CurrentToBase,

};

ES_TriggerStatus

Enumeration type to describe Status of Trigger
Button at T-Probe

enum ES_TriggerStatus

ES_TS_TriggerNotPressed,
ES_TS_TriggerPressed,
}:

e ES_TS_TriggerNotPressed,

The measurement trigger button at the T-
Probe is currently released

e ES_TS_TriggerPressed,
The measurement trigger button at the T-
Probe is currently pressed

ES MeasurementTipStatus

Enumeration type to describe Status of
Measurement Tip at T-Probe

147

enum ES_MeasurementTipStatus

};

ES_PTS_TipOK,
ES_PTS_UnknownTip,
ES_PTS_MultipleTipsAttached

e ES_PTS_TipOK
A tip (adapter) is present and is working
correctly

e ES_PTS_UnknownTip
There is no tip (adapter) attached or the
currently attached tip cannot be recognized

e ES_PTS_MultipleTipsAttached
There are multiple Tips attached

ES TriggerSource

Specifies the source for the measurement
trigger. This enumeration type is used as a
parameter for the ES_C_Set/GetTriggerSource
commands.

See 'Tracker Trigger Interface’ Appendix for a
more detailed description of trigger- issues.

enum ES_TriggerSource

{

ES_TS_Undefined,
ES_TS_Internal_Application,
ES_TS_External,
ES_TS_External_EventMessage,

e ES TS Undefined
The trigger source is undefined.

e ES_TS_Internal_Application
The application acts as trigger source.
Mainly used for emScon internal modes.

e ES TS External
The trigger source is external. The “trigger
port’ of the controller is used for trigger
signal input. A regular clock signal is
usually used with this mode.

e ES_TS_External EventMessage
The trigger source is external. The trigger
port of the controller is used for trigger

148

signal input. The trigger signal occurs on a
specific event such as (manual) button
press, robot elevation limit and so on.
There is no distinction between start/stop.
The application defines the behavior (for
example whether the reaction is the same
for every event, or whether there is a toggle
behavior).

An ‘ExternalTriggerEvent’ status change
event is issued on each trigger event.

ES_TrackerFace

Specifies the Tracker Face. This enumeration type
is used as a parameter for the ES_C_GetFace
command.

enum ES_TrackerFace

ES_TF_Unknown,
ES_TF_Facel,
ES_TF_Face2
¥
e TF Unknown
Tracker face could not be determined.

Should not occur under normal conditions.

e ES TF Facel
The tracker is in face I position.

e ES TF Face2
The tracker is in face II position.

ES MeasurementCameraMode

Specifies the source for the measurement camera
mode. This enumeration type is used as a
parameter for the
Set/GetMeasurementCameraMode command.

enum ES_MeasurementCameraMode

ES_MCM_Measure,
ES_MCM_Overview,

};
e ES MCM_Measure
Measurement camera (T-Cam) is in
measurement mode.

149

e ES MCM_Overview
Measurement camera (T-Cam) is in
overview mode and can be addressed by
e.g. GetStilllmage.

ES_MeasurementCameraType

Specifies the measurement camera type. This
enumeration type is used as a parameter for the
GetMeasurementCameralnfo command.

enum ES_MeasurementCameraType

{

ES_MC_None,

ES_MC_TCam700,
ES_MC_TCam800,
ES_MC_TCam706,
ES_MC_TCam709,
ES_MC_TCam_MR,
ES MC_TCam_LR,

e ES MC None

Type could not be determined. Should not
occur under normal conditions.

e ES_MC_TCam?700

ES MC_TCam_LR
T-Cam is of indicated type

ES_ProbeType

Specifies the measurement probe type. This
enumeration type is used as a parameter for the
GetMeasurementProbelnfo command.

enum ES_ProbeType

{
ES_PT_None,
ES_PT_Reflector,
ES_PT_TProbe,
ES_PT_TScan,
ES_PT_MachineControlProbe,
ES_PT_TCamToTrackerTool,
ES_PT_ZoomArtifactTool,

e ES PT None
Type could not be determined. Should not
occur under normal conditions.

e ES PT Reflector
The “probe’ is a reflector. No 6DoF
measurements are possible

150

e ES PT TProbe
Probe is a standard T-Probe

e ES PT TScan
Probe is a T-Scan

e ES PT MachineControlProbe
Probe is of type ,Machine Control Probe

7

e ES PT TCamToTrackerTool,
'"Probe’ is the T-Cam to tracker
compensation tool.

e ES PT_ZoomArtifactTool,
Probe’ is the T-Cam to tracker
compensation tool.

ES ProbeConnectionType

Specifies the measurement probe type. This
enumeration type is used as a parameter for the
GetMeasurementProbelnfo command.

enum ES_ProbeConnectionType

{
ES_PCT_None,

ES_PCT_CableController,
ES_PCT_CableSensor,
ES_PCT_IRLaser,

ES_PCT_IRWideAngle,

e ES PCT None
No connection could be determined

e ES PCT CableController
Connection is through cable to controller

e ES PCT CableSensor
Connection is through cable to sensor
(skipping the controller)

e ES PCT IRLaser
There is a wireless connection (through
Infrared Laser)

151

e ES_PCT_IRWideAngle
There is a wireless connection (through
Infrared wide angle sensor)

ES_ProbeButtonType

Specifies the measurement probe measurement
button (trigger). This enumeration type is used as
a parameter for the GetMeasurementProbelnfo
command.

enum ES_ProbeButtonType

ES_PBT_None,
ES_PBT_Measurement,
ES_PBT_4Button,

};

e ES PBT None
The probe is not equipped with a trigger
button.

e ES PBT Measurement
The probe is equipped with one or several
trigger buttons. If more than one (usually
4), all buttons have the same functionality -
usually used to trigger a measurement
(hence the name)

e ES_PBT_4Button
The probe is equipped with 4 Buttons. Each
one of these may cause an individual
trigger event. Note that this is not the
default behaviour of a 4Button probe. This
mode must be explicitly enabled. See
ES_ProbeConfigButton. Only newer probes
with appropriate firmware support this
mode.

ES TipType

Specifies the measurement tip type. This
enumeration type is used as a parameter for the
GetTipAdapters command. Note: There exist
alternate terms for 'Tip'. Some talk of 'Stylus'.

152

enum ES_TipType

{
ES _TT_None,
ES TT_Fixed,
ES_TT_Scanner,

ES_TT_TouchTrigger,

e ES TT None
Tip type is undefined or could not be
determined.

e ES TT Fixed
Tip tip-type is a fixed standard tip.

e ES TT Scanner
Tip “tip’ type is a scanner. L.e. a “virtual tip’.

e ES TT TouchTrigger
Tip tip-type is equipped with a touch-
trigger.

ES ClockTransition

Specifies the trigger clock transition. This
enumeration type is used as a parameter for the
Get/SetExternTriggerParams command
(ExternTriggerParamsT sub-structure)

enum ES_ClockTransition

ES_CT_Positive,
) ES_CT_Negative,
e ES_CT_Negative
The negative clock transition triggers the
event

e ES CT Positive
The positive clock transition triggers the
event

ES TriggerMode

Specifies the trigger mode. This enumeration type
is used as a parameter for the
Get/SetExternTriggerParams command
(ExternTriggerParamsT sub-structure).

See 'Tracker Trigger Interface’ Appendix for a
more detailed description of trigger- issues.

153

enum ES_TriggerMode

{
ES_TM_EventTrigger,
ES_TM_ContinuousExternalClockWithStartStop,

ES_TM_InternalClockWithExternalStartStop,
};

e ES_TM_EventTrigger
The measurement is triggered by an event
trigger (button, touch- trigger)

e ES TM_ContinuousExternalClockWithStart
Stop
The measurement (start/stop) is triggered
by an external clock.

e ES_TM_InternalClockWithExternalStartStop
The measurement is triggered by the
internal clock, with external start/stop.

ES_TriggerStartSignal

Specifies the level of the trigger start signal. This
enumeration type is used as a parameter for the
Get/SetExternTriggerParams command
(ExternTriggerParamsT sub-structure).

See "Tracker Trigger Interface’ Appendix for a
more detailed description of trigger- issues.

enum ES_TriggerStartSignal

ES_TSS High,
ES_TSS Low,
};

e ES TSS Low
The trigger start signal is of low level.

e ES_TSS_High
The trigger start signal is of high level.

ES_SystemParameter

Specifies the value to be addressed by the
ES_C_Set/GetLongSystemParameter command.

154

enum ES_SystemParameter

{
ES_SP_KeepLastPositionFlag,

ES_SP_WeatherMonitorSetting,
ES_SP_ShowAl 16DMeasurements,
ES_SP_LaserPointerCaptureBeanm,
ES_SP_DisplayReflectorPosition,
ES_SP_ProbeConfig_Button,
ES_SP_ProbeConfig_ButtonEvent,
ES_SP_ProbeConfig_Tip,
ES_SP_ProbeConfig_SoundVolume,
ES_SP_ProbeConfig_PowerOffTime,
ES_SP_QuickReleaseStatus,
ES_SP_TcpCommandQueueSize,
ES_SP_SystemMax6DDataRate,

ES _SP_D_TemperatureThreshold,

ES _SP_D PressureThreshold,

ES_SP_D_ HumidityThreshold,
ES_SP_D_SystemLongest3DDistancelFM,
ES_SP_D_SystemLongest3DDistanceADM,
ES_SP_D_SystemLongest6DDistance,

e ES_SP_KeepLastPositionFlag
Param value: 0 = OFF; 1 = ON.
Important: Enabling the ‘KeepLastPosition’
flag is compulsory for 6D Measurement
Modes. Otherwise the Probe will not be
recognized (If beam catched at zero
position).
Alternatively, this setting also can be
controlled through the SetSystemSettings
command.

e ES_SP_WeatherMonitorSetting
Parameter value: see
ES_WeatherMonitorStatus.
Alternatively, this setting also can be
controlled through the SetSystemSettings
command.

e ES SP ShowAll6DMeasurements
Parameter value: 0 = Only show data if 6D
rotation status is OK (default); 1 = Show
always.

e ES_SP_LaserPointerCaptureBeam
Allows to control the behavior of the
'PointLaser' command if the beam is being
sent very close to a reflector. In this
situation, it is not always desired that the
laser beam locks on to the reflector.
Parameter value: 0 = Beam catch OFF; 1 =
Beam catch ON (default).

155

ES_SP_DisplayReflectorPosition

Parameter value: 0 = Disable Reflector
Position Tracking (default); 1 = Enable
Tracking. This setting also can be controlled
through the SetSystemSettings command.

ES_SP_ProbeContfig_Button
Configures the behavior of the probe-
buttons. Parameter values: see enum
ES_ProbeConfigButton

ES_SP_ProbeConfig_ButtonEvent
Enables/disables events throwing on using
the probe buttons. Parameter values: see
enum ES_ProbeButtonEvent

ES_SP_ProbeContig_Tip

Configure whether 6Dof measurements are
allowed without a mounted Tip or not.
Parameter values: enum

ES_ProbeConfigTip

ES_SP_ProbeConfig_SoundVolume
Parameter values: volume as long, 0: No

sound, 0..7 sound volume selected: 0 off, 1
(soft) — 7 (loud)

ES_SP_ProbeConfig_PowerOffTime

Time until probe automatically shuts off (if
idle).

Parameter values: time in minutes. valid
range: 2..255.

ES SP_QuickReleaseStatus
Indicates open/close status of Quick
Release. Parameter values: see enum
ES_QuickReleaseStatus

ES_SP_TcpCommandQueueSize

A value between 0 ... 10 can be set as
command buffer- depth. Default is 0, i.e.
command buffering is switched off.

ES_SP_SystemMax6DDataRate.
Cannot be set. Only 'Get..' supported. The

156

maximum measuring rate supported in
6DoF mode.

ES_SP_D_TemperatureThreshold

The Set/GetDoubleSystemParamter
command must be used to handle this
parameter. The value specifies the
Temperature- threshold upon which, if
reached, a
'ES_SSC_EnvironmentParamsChanged' (for
Air- Temperature) and/or (if applies) a
'ES_SSC_ObjectTemperatureChanged' (for
Object temperature) is thrown.

Default threshold for temperature is 0.1
degree Celsius and is common for both,
Air- and Object- temperature.

ES SP D PressureThreshold

The Set/GetDoubleSystemParamter
command must be used to handle this
parameter. The value specifies the Pressure-
threshold upon which, if reached, a
'ES_SSC_EnvironmentParamsChanged' is
thrown.

Default threshold for pressure is 1.0 hPa.

ES_SP_D_HumidityThreshold

The Set/GetDoubleSystemParamter
command must be used to handle this
parameter. The value specifies the
Humidity- threshold upon which, if
reached, a
'ES_SSC_EnvironmentParamsChanged' is
thrown.

Default threshold for pressure is 1.0 %.

ES_SP_D_SystemLongest3DDistancelFM
Cannot be set. Only 'Get..' supported.
Returns the longest distance (double
parameter value) the interferometer is able
to measure (which depends on tracker

type).

157

e ES_SP_D_SystemLongest3DDistanceADM
Cannot be set. Only 'Get.."' supported.
Returns the longest distance (double
parameter value) the Absolute Distance
Meter (ADM) is able to measure (which
depends on tracker type).

e ES_SP_D_SystemLongest6DDistance
Cannot be set. Only 'Get..' supported.
Returns the longest distance (double
parameter value) the system is able to
measure in 6DoF mode (which depends on
the combination of Tracker and TCam

type).

Note: Some settings, for example
‘LaserPointerCaptureBeam’,
'ES_SP_TcpCommandQueueSize and
‘ShowAll6Dmeasurements’ are non-persistent
settings.

They fall back to the default value in case of
server reboot. If applies, an application must
always set these values upon startup.

ES_ProbeConfigButton

Parameter values for
ES_C_Set/GetLongSystemParameter command in
case of 'ES_SP_ProbeConfig_Tip' parameter type.
Allows to configure the behavior of the probe
buttons.

enum ES_ProbeConfigButton
ES_PCB_SingleClick,
ES_PCB_StartStop,
. ES_PCB_4ButtonMode,
e ES_PCB_SingleClick:
A single button click causes a
'ES_SSC_MeasurementProbeButtonDown'
event. Typically used in an application to
trigger a ‘StartMeasurement'.

Remark: This mode has somehow become

158

obsolete. An application can always use
'ES_PCB_StartStop' and then only evaluate
either the Down- or the Up- Event or both.
For that reason, the equivalent to
'ES_PCB_SingleClick' is no longer available
in 4Button mode.

ES_PCB_StartStop:

A first button- click causes a
'ES_SSC_MeasurementProbeButtonDown '
event, releasing the button causes a
'ES_SSC_MeasurementProbeButtonUp'
event. Typically used to perform a
continuous measurement while the Button
is being hold down (i.e. Start the
measurement upon pressing the button and
stop it on releasing button).

ES_PCB_4ButtonMode:

This mode has been introduced with
emScon V2.3. It allows addressing each one
of the 4 probe buttons individually.
Behaves like ES_PCB_StartStop, but
individually for each one of the four
buttons.

In addition, 'double- click' events have been
defined for future issues. However, these
are not supported so far (V3.0).
Consequently, the following events are
issued:

ES_SSC_ProbeButton[1..4]Down,
ES_SSC_ProbeButton[1..4]Up

See enum 'ES_SystemStatusChange'. The
events
ES_SSC_MeasurementProbeButtonDown
and ES_SSC_MeasurementProbeButtonUp
are void in 4Button mode.

Only newer probes with appropriate
firmware support this mode.

See also ES_ProbeButtonType.
Double-click events are not yet available

159

with emScon versions V3.0.

ES_ProbeConfigTip

Parameter values for
ES_C_Set/GetLongSystemParameter command in
case of ES_SP_ProbeConfig_Tip parameter type.

enum ES_ProbeConfigTip

ES_PCT_OnlyWithTip,
ES_PCT_NoTipAllowed,
ES_PCT_OnlyWithShankCompensation,
};
e ES_PCT_OnlyWithTip:
Probe requires a Tip attached to allow

measuring.

e ES_PCT_NoTipAllowed:
No tip required (Scanner- probes). System
allows measuring without a tip.

e ES_PCT_OnlyWithShankCompensation:
If 'ProbeConfigTip' is set to this value, a
valid shank- compensation must exist.
Otherwise the system will not get ready
(‘'green') for measuring.

This setting thus can be used by an
application to force a shank- compensation,
if applies.

Note: If a shank compensation exists for a
particular tip, but
'ES_PCT_OnlyWithShankCompensation' is
not set, the measurements will nevertheless
be corrected by the shank compensation
values!

This setting does therefore not mean to
enable/disable an (existing) shank
compensation! It is just thought as a
'security- switch' for applications that must
have valid shank compensations in order to
block measurements if the shank
compensation is missing!

160

ES ProbeButtonEvent

Parameter values for the
ES_C_Set/GetLongSystemParameter command in
case of ES_SP_ProbeContfig_ButtonEvent
parameter type.

enum ES_ProbeButtonEvent

ES_PBE_DisableEvents,
ES_PBE_EnableEvents,

};
e ES PBE_DisableEvents:

no button events are sent

e ES PBE_EnableEvents:
server sends button events

ES_QuickReleaseStatus

Parameter values for the
ES_C_GetLongSystemParameter command in
case of ES_SP_QuickReleaseStatus parameter

type.

enum ES_QuickReleaseStatus

ES_QRS_Closed,
ES_QRS_Open,

e ES QRS Closed:

Quick release is closed (OK to continue
with tracker operations)

e ES_QRS_Open:
Quick release is open (Must first close in
order to continue with tracker operations)

ES MeasurementStatusinfo

The values of this enum can be used to
identify/mask each individual bit of the long
parameter delivered by the command

ES C_GetMeasurementStatusinfo. Hence the
power of 2 of every value. The meaning of the
values should be self-explaining according to
their symbol-names.

See description of command

161

ES C_GetMeasurementStatusInfo for further

information.
enum ES_MeasurementStatusinfo

{

ES_MSI1_Unknown = O,

ES _MSI_TrackerFound = 1,
ES_MSI_TrackerCompensationFound = 2,
ES_MS1_ADMFound = 4,
ES_MS1_ADMCompensationFound = 8,
ES_MSI1_MeasurementCameraFound = 16,
ES_MSI_InternalCameraParamsOK = 32,
ES_MSI1_CameraToTrackerParamsFound = 64,
ES_MSI1_MeasurementProbeFound = 128,
ES_MSI1_ProbeParamsFound = 256,
ES_MSI_MeasurementTipFound = 512,

ES _MSI_TipParamsFound = 1024,
ES_MS1_ReflectorFound = 2048,
ES_MSI1_lInFacel = 4096,
ES_MSI1_ShankParamsFound = 8192,

ES_ClearCommandQueueType

This type is used as input- parameter for the
'ClearCommandQueue' command. See struct

ClearCommandQueueCT. Clearing command

buffers is only an issue when the
ES_SP_TcpCommandQueueSize system
parameter is set > 0 and usually only if a fatal

error has happened upon which we want to stop

the command execution immediately.
This is an advanced programming feature.

enum ES_ClearCommandQueueType

ES_CCQ_ClearOwnOnly,
ES_CCQ_ClearAll,

e ES_CCQ_ClearOwnOnly:

Clear only those commands from the queue
that were placed by the owning application.
Do not remove commands that have been

placed by other clients. This is an issue if

several clients are connected to the server at

a time.

e ES CCQ_ClearAll:
Clear all pending commands, regardless
which application placed them.

ES OverviewCameraType

This enum is part of the result of a

'GetOverviewCameralnfo' command. See struct

162

GetOverviewCameralnfoRT. It shows the type of
the mounted overview camera.

enum ES_OverviewCameraType

ES_OCT_Unknown,
ES OCT_Classic,
ES_OCT_TCam_lIntegrated, // overview camera in TCam stand
}:
e ES OCT_Unknown:
None or a non- recognizable Overview

Camera is mounted.

e ES OCT_Classic
A classic 'standalone' Overview Camera is
mounted on the tracker.

e ES OCT_TCam_Intergrated
A T-Cam with integrated Overview Camera
is installed. Note: This is a hardware option
- Not all T-Cams have an integrated
overview camera.

ES_TriggerCardType

This enum is part of the result of a
'GetTriggerBoardInfo' command. See struct
GetTriggerBoardInfRT. It shows the type of the

mounted trigger board.
enum ES_TriggerCardType

ES_TCT_None,
ES _TCT_SingleTracker,

};
e ES TCT_None

The system is not equipped with a Trigger
Board.

e ES_TCT_SingleTracker
The system is equipped with a single
Tracker Trigger Board.

Multi- Tracker Boards are not yet supported.

ES_ADMType
Specifies the type of the Absolute Distance Meter.

163

enum ES_ADMType

ES_AMT_Unknown,
ES_AMT_LeicaADM,
ES_AMT_LeicaAlFM,
};
e ES AMT_ Unknown
The type is unknown or cannot be

determined.

e ES AMT LeicaADM
The ADM is a Leica type ADM.

e ES AMT LeicaAIFM
The tracker is equipped with an 'absolute
interferometer’' ADM type.

ES_TrkAccuracyModel

Specifies the accuracy model of the tracker.

enum ES_TrkAccuracyModel

ES_TAM_Unknown,
ES_TAM_2005,
};
e ES TAM_ Unknown
The accuracy model cannot be determined.

This is mostly due to old firmware.

e ES TAM 2005
The accuracy model represents the revision
from 2005.

ES_NivelType

Specifies the type of the 'Nivel' inclination sensor.
Note that the 'range of most precise
measurement' of the Nivel 230 is smaller [1.1
mrad] than the one of the Nivel 20 [1.5 mrad].

Details see Nivel hardware Manuals.
enum ES_NivelType

ES_NT_Unknown,
ES_NT Nivel20,
ES_NT_Nivel230,
};
e ES NT Unknown
The 'Nivel' type is unknown or cannot be

determined.

164

ES_NT_Nivel20
The type is a 'classic’ Nivel20 inclination
Sensor.

ES_NT_Nivel230
The type is of a new Nivel230 (released
2005)

ES_TipToProbeCompensationType

Specifies the type of the TipToProbe
Compensation. See command
'GetTipToProbeCompensations2' where this
parameter is delivered.

enum ES_TipToProbeCompensationType

ES_TCT_Unknown,
ES_TCT_TipOnly,
ES_TCT_ShankEnabled,

};

ES TCT_Unknown

The type of the TipToProbe compensation
could not be determined.
ES_TCT_TipOnly

There exists only a Tip compensation

ES_TCT_ShankEnabled

A Tip and a Shank compensation exists.
Note: The option 'Shank compensation
only' (i.e. without Tip compensation) is not
possible.

165

3.4 Data Structures

This section describes all data structures defined
in ES_C_API_Def.h. The data structures describe
the 'layout’ of the data packets (byte arrays) to be
transmitted over the TCP/IP network. The
structures are required to construct and send data
packets, to mask incoming data packets in order
to recognize their type and to interpret their
contents.

Note the 4-Byte alignment prerequisite for the
Tracker Server and the client. See #pragma pack
(push, 4) in file ES_C_API_Def.h. The 'pragma
pack' is a Microsoft specific C-language
extension. A 4-Byte alignment may be different
for other C/C++ compilers. No change of layout (
of bytes and alignment for each member) is
permitted, during translation of these structures
to other languages.

There is a short general description for each type.
Not all members are described in detail. Data
members are often self- explanatory, while
enumeration-type members have been described
under Enumeration Types. Struct variable
descriptions are provided only where necessary.

Parameters are always in current units and
coordinate system / CS-type (where applicable)
— unless specified otherwise.

3.4.1 Basic Data Structures

This section describes those data structures that
are not directly exchanged as packets. They are
used as sub-structures to compose the real
'Packet’ data types.

166

PacketHeaderT

struct PacketHeaderT

{

long IPacketSize;
enum ES_DataType type;
}:

This basic structure is a part of all data blocks
transmitted over the TCP/IP network. The
[PacketSize has been introduced for programmer's
convenience. The value of the data structure
contains the size (in Bytes) of received packets.
New for emScon V2.0 and up:

The IPacketSize value is no longer ignored. It is
compulsory to correctly initialize this value.
Otherwise, command calls will mostly fail.
Note that due to this change, existing V1.2 / V1.5
emScon C- clients, who did not initialize these
length variables, may fail with emScon servers
newer than V2.0. Such client applications need
to be fixed at source level.

C- programmers may use the sizeof() operator to
determine the size of data structures.

ReturnDataT
struct ReturnDataT
struct PacketHeaderT packetHeader;

enum ES_ResultStatus status;

This basic structure is part of all result data
blocks. It comprises a PacketHeaderT and a

ES ResultStatus.

Note: the variable 'status' cannot only take
values of the enum 'ES_ResultStatus'. In
addition, it may take any hardware/controller
error as listed in the Appendix of this manual.

BasicCommandCT
struct BasicCommandCT

struct PacketHeaderT packetHeader;
enum ES_Command command;

};
This is a generic structure used to derive all other

command types from. It serves as a general basis
for sending commands.

167

BasicCommandRT
struct BasicCommandRT

{
struct PacketHeaderT packetHeader;
enum ES_Command command;
enum ES_ResultStatus status;

}:

This is a generic structure used to derive all other
result types from. It serves as a general basis for
receiving commands.

Instead of using 'typedet' for all basic command
types / result types (commands that do not take
additional parameters or do not return date), two
data structure containing only BasicCommandCT /
BasicCommandRT member have been introduced.
This approach enables naming consistency, with
respect to struct nesting depth.

See also chapter 'Non- Parameter Command/Return
Types'.

Note: the variable 'status' cannot only take
values of the enum 'ES_ResultStatus'. In
addition, it may take any hardware/controller
error as listed in the Appendix of this manual.

MeasValueT
struct MeasValueT

{
enum ES_MeasurementStatus status;
long ITimel;
long ITime2;
double dval1l;
double dval2;
double dval3;

};

This struct describes a single measurement of a
continuous 3D measurement stream. Timel
indicates seconds expired since a measurement
start. Time2 indicates microseconds expired
within the last second. The total elapsed time in
microseconds is:

T [ms] =10e6 * ITimel + ITime2

Attention: The value of T in the formula above
becomes huge within only a few minutes! If
your application implements this formula, you
must use caution to avoid an overflow of T.
Either use a 64bit Integer or protect the resulting

168

value for not to exceed MaxInt (depends on your
platform).

Example:

If T was an ordinary 32 bit (unsigned) long value,
its max value is 2732 = 4294'967'296.

This value (in microseconds) evaluates to ~ 4295
seconds. In other words, without any measures,
after a continuous measurement period of about
1.2 hours the, value of T will overflow and
probably cause a crash of your application. (Even
worse with a signed value where the overflow
will happen after ~ 0.6 hours)

Position values Vall..Val3 are in current units /
CS-type and according to applied orientation /
transformation parameters.

MeasValue2T

struct MeasValue2T

{
enum ES_MeasurementStatus status;
long ITimel;
long ITime2;
double dvall;
double dval2;
double dval3;
double dAprioriStdDevl;
double dAprioriStdDev2;
double dAprioriStdDev3;
double dAprioriStdDevTotal;
double dAprioriCovarl2;
double dAprioriCovari3;
double dAprioriCovar23;
}:

This struct describes a single measurement of a
continuous 3D measurement stream in case the
statistical mode is set to ‘extended’. Principally
the same as MeasValueT, but with statistic
information in addition. Position values and
statistic parameters are in current units / CS-type
and according to applied orientation /
transformation parameters.

See command 'SetStatisticMode” and description
of struct 'MeasValueT above, for details.

169

ProbeMeasValueT

struct ProbeMeasValueT

{
enum ES_MeasurementStatus status;
enum ES_TriggerStatus triggerStatus;
long IRotationStatus;
long ITimel;
long ITime2;
double dPositionl;
double dPosition2;
double dPosition3;
double dStdDevPositionl;
double dStdDevPosition2;
double dStdDevPosition3;
double dStdDevPositionTotal;
double dCovarPositionl2;
double dCovarPositionl3;
double dCovarPosition23;
double dQuaternionO;
double dQuaternionl;
double dQuaternion2;
double dQuaternion3;
double dRotationAngleX;
double dRotationAngleY;
double dRotationAngleZ;
double dStdDevRotationAngleX;
double dStdDevRotationAngleY;
double dStdDevRotationAngleZ;
double dStdDevRotationAngleTotal;
double dCovarRotationAngleXY;
double dCovarRotationAngleXZ;
double dCovarRotationAngleYZ;
};

This struct describes a single measurement (6
degrees of freedom) in a 6DoF continuous
measurement stream. Timel indicates seconds
expired since a measurement start. Time2
indicates microseconds expired within the last
second. The total elapsed time in microseconds is:

T [ms] =10e6 * ITimel + ITime2

Attention: The value of T in the formula above
becomes huge within only a few minutes! If
your application implements this formula, you
must use caution to avoid an overflow of T.
Either use a 64bit Integer or protect the resulting
value for not to exceed MaxInt (depends on your
platform).

Example: See MeasValueT

Position values, angular values and statistic
parameters are in current units / CS-type and
according to applied orientation / transformation
parameters.

170

The position values relate to the center of the tip
ruby sphere.

Rotation angles are always represented in the
interval between -PI and PI.

The following helper- structs ease the
interpretation of the Rotation- Status:

RotationStatus

Note: If the SystemParameter flag
'ES_SP_ShowAll6DMeasurements' is set to 'False'
(which is default), then only measurements with
Rotation Status OK will arrive. Interpreting the
Rotation Status only becomes an issue if the
'ShowAlleDMeasurements' is enabled (By using
the 'SetLongSystemParameter' command).

The following union can be used to easily
interpret the rotation status: Assign the returned
value (a long) to URotationStatus.l, then interpret
the Error6D and optionally other fields. Note that
the fields are only valid if Status6D bit is set.

The evaluation of rotation status in detail is
subject of advanced programming. Usually it is
sufficient just to check for ‘Error6D’ being 0
(success) or 1 (error) (while ‘Status6D’ is 1).

171

struct RotationStatus

{
unsigned Status6D:1; // 0 => no rotation status; 1 =>
// rotation status valid
unsigned Error6D:1; // 1 => ERROR in rotation status
unsigned NotEnoughLED:1;
unsigned RMSToHigh:1;
unsigned AngleOutOfRange:1; // Hz or Vt (see RotStatus
// values)
unsigned Frozen6éDValues:1; // 6D values are not updated !
unsigned DistanceOutOfRange:1;// dist too short or too long
unsigned Reservedl:1; // always 0
unsigned RotStatlLeftRight:3; // see documentation
unsigned RotStatUpDown:3; // see documentation
unsigned GoodGauge:2; // 0 => All bad; 1 => 33% good
// 2 => 66% good ...
unsigned Face2:1; // 0 => Facel; 1 => Face2
unsigned Reserved2:15; // always 0O
}:
union URotationStatus
long 1;
struct RotationStatus rotStat;

StationaryModeDataT

struct StationaryModeDataT

{
long IMeasTime;
ES_BOOL bUseADM; // Caution: has no effect in 6D mode !

Used as parameters for the
Set/GetStationaryModeParams commands. The
measurement time parameter must lie between
500 ms [2500 ms if useADM is true] and 100'000
ms (0.5 [2.5] — 100 seconds).

The useADM flag is false by default. If this flag is
set to true, an ADM measurement is always
performed prior to the stationary measurement
(which is based on the IFM). This usually does
not make sense and will also slow down the
measurement process significantly.

Only in exceptional cases, this flag may be set to
true. (For example if the beam always remains
attached to the same reflector and there is a major
time- gap between measurements (several
minutes or hours).

Note: the useADM flag has no effect for 6DoF
measurement modes and will be ignored for
these modes, regardless whether true or false.

172

ContinuousTimeModeDataT
struct ContinuousTimeModeDataT

{
long ITimeSeparation;
long INumberOfPoints;
ES_BOOL bUseRegion;
enum ES_RegionType regionType;

}:

Used as parameters for the
Set/GetContinuousTimeModeParams commands. A
INumberOfPoints value of zero means 'infinite' (in
this case, the measurement must be stopped
explicitly with a StopMeasurement command).
Time separation is in milliseconds and can vary
between 1..99999 m:s.

ContinuousDistanceModeDataT
struct ContinuousDistanceModeDataT

{
double dSpatialDistance;
long INumberOfPoints;
ES_BOOL bUseRegion;
enum ES_RegionType regionType;

}:

Used as parameters for the
Set/GetContinuousDistanceModeParams commands.
A INumberOfPoints value of zero means 'infinite'
(must be stopped explicitly). Rather than based
on a time- separation criteria, a distance criteria is
used. It is in current length- unit. Note: One
single measurement will be preformed upon
StartMeasurement. Further measurements are not
taken until the reflector is being moved.

A region can be applied to limit the 'sensitive'
measurement space. See commands SetBox- /
SetSphereRegionParams for region definition.

SphereCenterModeDataT

struct SphereCenterModeDataT

double dSpatialDistance;

long INumberOfPoints;

ES_BOOL bFixRadius;

double dRadius;
};
Used as parameters for the
Set/GetSphereCenterModeParams commands. A
INumberOfPoints value of zero means 'infinite’
(must be stopped explicitly).

Spatial distance and Radius are in current length-

173

unit. The radius can be left variable (to be
calculated by the fit- routine), or fixed, if it is
known.

Same trigger criteria as with Continuous distance
mode.

CircleCenterModeDataT

struct CircleCenterModeDataT

double dSpatialDistance;

long INumberOfPoints;

ES_BOOL bFixRadius;

double dRadius;
};
Used for parameters
Set/GetCircleCenterModeParams commands. A
INumberOfPoints value of zero means 'infinite’
(must be stopped explicitly).
Radius is in current length- unit.
Spatial distance and Radius are in current length-
unit. The radius can be left variable (to be
calculated by the fit- routine), or fixed, if it is
known.
Same trigger criteria as with Continuous distance

mode.

GridModeDataT

struct GridModeDataT

{
double dvall;
double dval2;
double dval3;
long INumberOfPoints;
ES_BOOL bUseRegion;
enum ES_RegionType regionType;
};

Used as parameters for the
Set/GetGridModeParams commands. The 3 values
describe the grid size in the CS. Position values
are in current units / CS-type. A INumberOfPoints
value of zero means 'infinite' (must be stopped
explicitly).

A region can be applied to limit the 'sensitive'
measurement space. See commands 'SetBox- /
SetSphereRegionParams' for region definition.

174

SearchParamsDataT
struct SearchParamsDataT

{

double dSearchRadius;
double ITimeOut;
};

Used for parameters of Set/GetSearchParams
commands.

The search process is aborted upon one or the
other of the two criteria is reached.

TimeOut is in milliseconds. There is a minimum
value of 10’000 ms (10 Seconds) and a maximum
of 240'000 ms (4 minutes).

SearchRadius is in current units. The timeout
parameter will interrupt the search if it takes too
long due to a too big search radius (if no reflector
found within the specified time). The Search
Radius in current length units and must lie
between 0 and 0.5 meters. The default value is
0.04 meters. (Caution with small or even zero
radius and / or small timeOut: Too small value
may cause the search process to fail.

Note: the maximum radius value was 1.0 m in
emScon versions prior to version 2.0 and has been
reduced to 0.5 m for newer versions!

Large search radii result in extended search
times, unless time is limited to a reasonable
value.

Typical values are 0.05 m for the radius and
30’000 ms for timeout.

AdmParamsDataT
struct AdmParamsDataT

{
double dTargetStabilityTolerance;

double IRetryTimeFrame;
double INumberOfRetrys;
}:

Used for parameters for the Set/GetAdmParams
commands. RetryTimeFrame is in milliseconds in
the range between 500 and 5000.
TargetStabilityTolerance is a distance parameter
and is in current length- units.
TargetStabilityTolerance must lie between 0.005
and 0.1 Millimeter. Leave this value as low as

175

possible! (Default is 0.005).

The SetAdmParams command should be used
with caution. Only change these parameters if
working in an unstable environment (vibrations).
Lowering the stability tolerance results in loss of
precision!

SystemSettingsDataT

struct SystemSettingsDataT

{
enum ES_WeatherMonitorStatus weatherMonitor;
ES_BOOL bApplyTransformationParams;
ES_BOOL bApplyStationOrientationParams;
ES_BOOL bKeepLastPosition;
ES_BOOL bSendUnsolicitedMessages;
ES_BOOL bSendReflectorPositionData;
ES_BOOL bTryMeasurementMode;
ES_BOOL bHasNivel;
ES_BOOL bHasVideoCamera;

};
Used for parameters of Set/Get SystemSettings
commands. The system settings are a collection of

various 'properties' to control certain behavior of
the emScon system :

o WeatherMonitorStatus
Indicates the WM status. See description on
enum ES_WeatherMonitorStatus
New behavior with emScon 3.0:
With emScon 3.0, there is an automatic
recognition of any attached meteo station.
See chapter Automatic External Device
Recognition (under Section 2.4) for more
details.

e bApplyTransformationParams
If this flag is set to false, the System does not
transform the measurements into a user-
specified coordinate system. If set to true,
transformation as per transformation
parameters is applied. If set to false, the
default transformation will be used {0, 0, 0, O,
0, 0, 1}, regardless of the current values set
with SetTransformationParams command.
Transformations also apply to the
positioning commands (such as GoPosition)
and to part of the Input/Output filters (Box,
Sphere)

176

o bApplyStationOrientationParams
If this flag is set to true, the System uses the
given orientation parameters. If set to false,
the default station orientation will be used {0,
0,0, 0,0, 0}, regardless of the current values
set with the SetStationOrientationParams
command. Orientations also apply to the
positioning commands (such as GoPosition).

e bKeepLastPosition
If this flag is set to true and the laser beam is
broken, it does not leave the current position.
This allows to 'catch’ the beam again, then
placing the reflector to a stable position. The
ADM then tries to perform a measurement
and — if success- sets the measured distance as
the new interferometer distance. From then on,
it is possible to recover measuring without
having to go back to the BirdBath on beam
broken events.
If the flag is set to false, the beam is disabled
(mirror points down). If an Overview Camera
is installed, the sensor drives into the camera
position.
Important: Enabling the ‘KeepLastPosition’
flag is compulsory for 6D Measurement
Modes. Otherwise the Probe will not be
recognized (If beam catched at zero position).

e bSendUnsolicitedMessages
If this flag is set to true, the system sends all
error messages as they occur. This flag
should always be true. Otherwise neither
error events nor system status- change
events will be issued. These events should be
suppressed only in real special situations.

e bSendReflectorPositionData
If this flag is set to true and a reflector / Probe
is locked on by the tracker, the system sends
the current reflector position (max. 3
measurements per second). These are issued

177

even when no continuous measurement is in
progress. They can be used to view the
Reflector/probe movement on applications
with graphic representation of reflector
movement. Do not regard the position values
as accurate measurements. They are of
limited accuracy!

See structs 'ReflectorPosResultT' and
'ProbePosResultT" for details.

bTryMeasurementMode

If this flag is set to true, the system delivers
all results in the try mode. This is a Leica
internal feature and therefore
undocumented. It can be ignored by
application programmers. The effect is just
that — if set to true — the value is 'echoed'
with each measurement.

bHasNivel

A hardware Configuration issue. This flag
tells the system that a Leica 'Nivel'
inclination sensor is attached. Measurements
with the sensor are now possible. Behavior
up to emScon V2.4: The system cannot
automatically detect whether a 'Nivel' sensor
is attached. Hence you must tell it the system
by enabling this flag.

New behavior with emScon 3.0:

With emScon 3.0, there is an automatic
recognition of any attached inclination
Sensor.

See chapter Automatic External Device
Recognition (under Section 2.4) for more
details.

bHasVideoCamera

A hardware Configuration issue. This flag
tells the system, that an Overview Camera is
present.

The following description mainly applies to
former emScon 2.4 and older systems. For

178

the new emScon 3.0 behavior see remark at
the end of this section.

If your system is equipped with an overview
camera, it is recommended to always having
checked this flag (even when the camera is
temporarily removed). Otherwise, leave it
always unchecked (= default).

In the meantime there exist different types of
overview cameras that differ in internal
parameters (focus distance, CCD chip size).
Older emScon versions were not able to
detect whether an overview camera was
mounted or not, not to speak of type
recognition (indeed it was the overview
camera hardware that did not support type
recognition). For that reason, the flag
'HasVideoCamera' was originally
introduced. Thus, the user had to 'tell' the
system when an overview camera was
mounted. Newer EmScon versions (2.0 and
up) are able to detect the camera type
automatically. Hence, this flag theoretically
has become obsolete. However, currently the
camera type is recognized only when the
'hHasVideoCamera' flag is enabled.

If your system is equipped with an overview
camera, it is highly recommended to always
having this flag checked (default is
unchecked). Otherwise, the system may not
detect the correct camera type and use
wrong (default) parameters.

However, wrong parameters do not cause
any fatal failures. The only effect will be that
the 'Find Reflector' feature by clicking to the
live video image by mouse pointer will move
the tracker inaccurately (typically, the tracker
will move double or half the amount of the
'clicked' distance).

New behavior with emScon 3.0:

With emScon 3.0, there is an automatic

179

recognition of any present overview camera.
See chapter Automatic External Device
Recognition (under Section 2.4) for more
details.

SystemUnitsDataT
struct SystemUnitsDataT

{
enum ES_LengthUnit lenUnitType;
enum ES_AngleUnit angUnitType;
enum ES_TemperatureUnit tempUnitType;
enum ES_PressureUnit pressuUnitType;
enum ES_HumidityUnit humUnitType;
}:

Used for parameters of Set/GetUnits commands.
See related enums — they explain themselves.

EnvironmentDataT
struct EnvironmentDataT

{
double dTemperature;
double dPressure;
double dHumidity;

}:

Used for parameters of Set/GetEnvironmentParams
commands. The SetEnvironmentParams command
mainly applies when no weather monitor is
available, or when disabled by the
bUseWeatherMonitor setting. Otherwise, these
parameters are updated implicitly and the
current values can be retrieved with the
GetEnvironmentParams. See also description of
enum 'ES WeatherMonitorStatus'.

See chapter 'Working Conditions'.

RefractionDataT
struct RefractionDataT

{

double dlfmRefractionlndex;
double dAdmRefractionlndex;

};

Used for parameters of Set/GetRefractionParams
commands. See also description of enum
'ES_WeatherMonitorStatus'.

This is a command for advanced and special
usage. It should only be used in combination with
the WeatherMonitorStatus mode
'ES_WMS_ReadOnly'. See description there.

180

Normal application should not explicitly set
refraction parameters. They are set indirectly by
using the SetEnvironmentParams command (if no
weather monitor available), or by selecting the
mode 'ES_WMS_Read AndCalculateRefractions'
(if a WM is connected).

Under certain conditions, the refraction
parameters are updated (set) implicitly on
setting new environment parameters. See
description of enum
'ES_WeatherMonitorStatus'.

See chapter 'Working Conditions'.

StationOrientationDataT
struct StationOrientationDataT

{
double dvalil;

double dval2;

double dval3;

double dRotl;

double dRot2;

double dRot3;
};

Used as parameters for
Set/GetStationOrientationParams commands.
Values are in current units and CS-type. These
settings can be enabled/disabled through the
system flag bUseStationOrientationParams.

TransformationDataT
struct TransformationDataT

double dvall;

double dval2;

double dval3;

double dRotl;

double dRot2;

double dRot3;

double dScale;

};

Used as parameters for
Set/GetTransformationParams commands. Values
are in current units and CS-type. These settings
can be enabled/disabled through the system flag
bUseLocal TransformationMode.

181

BoxRegionDataT
struct BoxRegionDataT

{
double dP1vall;

double dP1lval2;
double dP1lval3;
double dP2vall;
double dP2val2;
double dP2val3;

};

Used for parameters of Set/GetBoxRegionParams
commands. The parameters describe two
diagonal points of a box.

Values are in current units and CS-type (but not
according to active transformation settings).
These settings only apply if the bUseRegion flag in
the appropriate continuous measurement
structure is enabled, together with the 'Box'
region type.

SphereRegionDataT
struct SphereRegionDataT

{
double dvall;

double dval2;
double dval3;
double dRadius;

};

Used for parameters of Set/GetSphereRegionParams
commands. The parameters describe center point
and radius of a sphere.

Values are in current units and (apart from
Radius) in current CS-type and according to
applied transformation settings.

These settings only apply if the bUseRegion flag in
the appropriate continuous measurement
structure is enabled, together with 'Sphere' region

type.

ESVersionNumberT

struct ESVersionNumberT

int iMajorVersionNumber;
int iMinorVersionNumber;
int iBui ldNumber;

};
Used for one of the parameters of the

GetSystemStatus command. Contains version info
of the currently installed tracker server software.

182

TransformationinputDataT
struct TransformationlnputDataT

{
enum ES_TransResultType resultType;
double dTransVvall;
double dTransval2;
double dTransval3;
double dRotVall;
double dRotVval2;
double dRotVal3;
double dScale;
double dTransStdvall;
double dTransStdval2;
double dTransStdval3;
double dRotStdvVall;
double dRotStdvVal2;
double dRotStdval3;
double dScaleStd;

};

Used for parameters of the

Set/Get TransformationlnputParams command.
Used in order to specity (Fixing, Weighting)
transformation result values.

Values are in current units and (apart from
Radius) in current CS-type (No transformation

applies).
For details see Section 9.2 .

For the StdDev parameters, use values as
specified in chapter 'Constants'.

TransformationPointT
struct TransformationPointT

double dvall;
double dval2;
double dval3;
double dstdil;
double dstd2;
double dstd3;
double dCov12;
double dCov13;
double dCov23;

};

It is used as a sub- structure for the
AddNominal/AddActualTransformationPoint
commands.

Values are in current units and CS-type and
according to applied transformation settings only
in case of actual points. Nominal points are not
influenced by transformation settings.

For details see Section 9.2 .

For the StdDev parameters, use values as
specified in chapter 'Constants'.

183

CameraParamsDataT
struct CameraParamsDataT

{

int iContrast;
int iBrightness;
int iSaturation;

};
Used for parameters of the Set/GetCameraParams

command. Values of Contrast/Brightness range
from 0 to 256.

Saturation is currently not used and must be set
to zero.

3.4.2 Packet Data Structures

These data types describe the real data blocks
exchanged over the TCP/IP network between the
Tracker Server and the application PC. There are
9 main types of packets (see enum
'ES_DataType’). The structures of
ES_DT_Command- type packets differ for
different commands.

All packet types contain (directly or through
another sub-structure such as ReturnDataT,
BasicCommandCT or BasicCommandRT) a sub-
structure of type PacketHeaderT with the size and
type of the packet.

e Command type packets (apart from a certain
number of parameters), always contain an
ES_Command command type parameter.

e Return type packets, command, error and
measurements always contain a status
parameter.

ErrorResponseT

struct ErrorResponseT

struct PacketHeaderT packetHeader;
enum ES_Command command;
enum ES_ResultStatus status;

};
This receive-only structure ES_DT_Error packet

type describes the packet size and type. It
contains a standard packet header and a return

184

status, ES_ResultStatus, or a hardware/controller
error number.

Note: the variable 'status' cannot only take
values of the enum 'ES_ResultStatus'. In
addition, it may take any hardware/controller
error as listed in the Appendices of this manual.

The 'command' parameter is often set to

ES _C_Unknown since errors are often occur
'unsolicited’, that is, they are not a reaction to a
command. Consider a 'beam broken' error. Such
an event can happen at any time and is obviously
not caused by a command.

The command parameter is set to ES_C_Unknown
unless the error was caused by particular
command.

SingleMeasResultT

struct SingleMeasResultT

{
struct ReturnDataT packetinfo;
enum ES_MeasMode measMode;
ES_BOOL blsTryMode;
double dvall;
double dval2;
double dval3;
double dstdl;
double dstd2;
double dstd3;
double dStdTotal;
double dPointingErrorl;
double dPointingError2;
double dPointingError3;
double dAprioriStdl;
double dAprioriStd2;
double dAprioriStd3;
double dAprioriStdTotal;
double dTemperature;
double dPressure;
double dHumidity;

};

This receive-only structure describes the
ES_DT_SingleMeasResult packet type. Apart from
the standard ReturnDataT structure, it contains
data specific to a single tracker 3D measurement.
In addition to the 3 coordinate values, there is
statistical information such as standard
deviations (a posteriori and a priori) and pointing
errors. The environmental values are those
currently valid to the system (either those
explicitly set by SetEnvironmentParams, or those
last implicitly updated by the weather monitor).

185

The flag blsTryMode is set if system is in "Try
Mode'. This is not relevant for common users.
The format of measurements, statistical
information and environmental values depend on
current units. Measurements and statistical
information in addition are according current CS-
type and applied orientation / transformation
parameters.

SingleMeasResult2T

struct SingleMeasResult2T

{
struct ReturnDataT packetlinfo;
enum ES_MeasMode measMode;
ES_BOOL blsTryMode;
double dvall;
double dval2;
double dval3;
double dStdDev1l;
double dStdDev2;
double dStdDev3;
double dStdDevTotal ;
double dCovaril2;
double dCovari3;
double dCovar23;
double dPointingErrorH;
double dPointingErrorV;
double dPointingErrorD;
double dAprioriStdDevl;
double dAprioriStdDev2;
double dAprioriStdDev3;
double dAprioriStdDevTotal;
double dAprioriCovarl2;
double dAprioriCovarl3;
double dAprioriCovar23;
double dTemperature;
double dPressure;
double dHumidity;

};

This receive-only structure describes the

ES_DT _SingleMeasResult2 packet type in case of
extended statistical mode. Use this variant if
points to be used as input for the Transformation
routine.

The flag blsTryMode is set, if system is in "Try
Mode'. This is not relevant for common users.

See also command 'SetStatisticMode’.

The format of measurements, statistical
information and environmental values depend on
current units. Measurements and statistical
information in addition are according current CS-
type and applied orientation / transformation
parameters.

186

MultiMeasResultT

struct MultiMeasResultT

{
struct ReturnDataT packetinfo;
long INumberOfResults;
enum ES_MeasMode measMode;
ES_BOOL blsTryMode;
double dTemperature;
double dPressure;
double dHumidity;
struct MeasValueT data[1];

}:

This receive-only structure describes the

ES_DT_ MultiMeasResult packet type, where a
continuous stream of packets is received during a
continuous measurement.

A packet consists of the single measurement and
an array of MeasValueT parameters attached to it.
The MultiMeasResultT structure only contains
(covers) the first element of this array (a 'pointer’
to the array). The INumberOfResults parameter
identifies the number of array elements, and the
remaining elements can be iterated from data [0]

... data [INumberOfResults - 1].
C-Arrays are always zero-based!

This structure only covers the header of a multi-
measurement packet. Measurement mode and
environmental parameters are common for the
body (measurement array). The flag blsTryMode is
set if system is in Try Mode. This is not relevant
for common users.

The format of measurements, statistical
information and environmental values depend on
current units. Measurements and statistical
information in addition are according current CS-
type and applied orientation / transformation
parameters.

187

MultiMeasResult2T
struct MultiMeasResult2T
{

struct ReturnDataT packetinfo;

long INumberOfResults;
enum ES_MeasMode measMode;

ES_BOOL blsTryMode;
double dTemperature;
double dPressure;

double dHumidity;

struct MeasValue2T data[1];

};

The same as MultiMeasResultT (see above), but
received in case the statistical mode is set to

‘extended’.

See also command 'SetStatisticMode’.

ProbeStationaryResultT

struct ProbeStationaryResultT

struct ReturnDataT
enum ES_MeasMode
ES_BOOL

enum ES_TriggerStatus
long

long

int

enum ES_MeasurementTipStatus

long

long

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

};

packetlinfo;

measMode;

blsTryMode;

triggerStatus;
IRotationStatus;
ilnternalProbeld;
iFieldNumber;

tipStatus;
ilnternalTipAdapterld;
iTipAdapterinterface;
dPositionl;

dPosition2;

dPosition3;
dStdDevPositionl;
dStdDevPosition2;
dStdDevPosition3;
dStdDevPositionTotal ;
dCovarPositionl2;
dCovarPositionl3;
dCovarPosition23;
dAprioriStdDevPositionl;
dAprioriStdDevPosition2;
dAprioriStdDevPosition3;
dAprioriStdDevPositionTotal;
dAprioriCovarPositionl2;
dAprioriCovarPositionl3;
dAprioriCovarPosition23;
dQuaternionO;
dQuaternionl;
dQuaternion2;
dQuaternion3;
dRotationAngleX;
dRotationAngleY;
dRotationAngleZ;
dStdDevRotationAngleX;
dStdDevRotationAngleY;
dStdDevRotationAngleZ;
dStdDevRotationAngleTotal;
dCovarRotationAngleXY;
dCovarRotationAngleXZ;
dCovarRotationAngleYZ;
dAprioriStdDevRotationAngleX;
dAprioriStdDevRotationAngleY;
dAprioriStdDevRotationAngleZ;

dAprioriStdDevRotationAngleTotal;

dAprioriCovarRotationAngleXY;
dAprioriCovarRotationAngleXZ;
dAprioriCovarRotationAngleYZ;
dTemperature;

dPressure;

dHumidity;

This receive-only structure describes the
ES_DT _Single6DMeasResult packet type.

188

This structure is used to transmit the result of a
6D stationary measurement. The result depends
on current length and angle units, the coordinate
system type, orientation and transformation
parameters applied.

It contains:
- Status Information

- Adapter where Tip mounted including its
accuracy

- Probe position. The position values relate to the
center of the tip ruby sphere.

- Probe orientation in two different
representations:

- Quaternion or
- Rotation Angles including their accuracy

- Environmental Data

Rotation angles are always represented in the
interval between -PI and PI.

Details about RotationStatus: see chapter
'Rotation Status' just following the chapter
'ProbeMeasValueT

Applies only to 6DoF systems.

ProbeContinuousResultT

struct ProbeContinuousResultT

{

struct ReturnDataT packetinfo;
long INumberOfResults;
enum ES_MeasMode measMode;
ES_BOOL b1sTryMode;
int ilnternalProbeld;
int iFieldNumber;
enum ES MeasurementTipStatus tipStatus;
int iInternalTipAdapterld;
int iTipAdapterinterface;
double dTemperature;
double dPressure;
double dHumidity;
struct ProbeMeasValueT data[1];
}:

This receive-only structure describes the ES_DT _
ContinuousProbeMeasResult packet type. The only

189

difference to an ES DT MultiMeasResult is the
array element types. Applies only to 6DoF

systems.
NivelResultT
struct NivelResultT
struct ReturnDataT packetlinfo;
enum ES_NivelStatus nivelStatus;
double dXTilt;
double dYTilt;
double dNivelTemperature;

};

This receive-only structure describes the
ES_DT NivelResult packet type, which includes
the ReturnDataT structure and contains data
specific to a 'Nivel' measurement.

Refer to chapter 'ES_NivelStatus' in chapter 3.3.2
(enumeration types) for details about supported
measurement ranges.

The format of measurement and environmental
values do NOT depend on current unit settings.
'Nivel' results always arrive in native 'Nivel'
format — milliradiant for X/Y tilt and Celsius for
temperature.

ReflectorPosResultT

struct ReflectorPosResultT

{
struct ReturnDataT packetinfo;
double dvalil;
double dval2;
double dval3;

};

This receive-only structure describes the
ES_DT_ReflectorPosResult packet type. These are
received whenever the tracker is locked onto a
reflector (3 measurements per second). The
receipt of these 'measurement'- types can be
switched on/off with the systems flag
bSendReflectorPositionData. Values are in current
units / CS-type and according to applied
orientation / transformation parameters.

190

ProbePosResultT

struct ProbePosResultT

{
struct ReturnDataT packetinfo;
long IRotationStatus;
enum ES MeasurementTipStatus tipStatus;
long ilnternalTipAdapterld;
long iTipAdapterinterface;
double dPositionl;
double dPosition2;
double dPosition3;
double dQuaternion0O;
double dQuaternionl;
double dQuaternion2;
double dQuaternion3;
double dRotationAngleX;
double dRotationAngleY;
double dRotationAngleZ;
};

The 'Probe' relative to ReflectorPosResult. Values
are in current units / CS-type and according to
applied orientation / transformation parameters.
There are some status values in addition.
Rotation angles are always represented in the
interval between -PI and PI.

The position values relate to the center of the tip
ruby sphere.

Details about RotationStatus: see chapter
'Rotation Status' just following the chapter
'ProbeMeasValueT"

SystemStatusChangeT

struct SystemStatusChangeT

struct ReturnDataT packetHeader;
enum ES_SystemStatusChange systemStatusChange;

};
This receive-only structure describes the

ES_DT_SystemStatusChange packet type. These
are received when the system status has changed.

See enum 'ES_SystemStatusChange' for
supported notification types.

ExternTriggerParamsT

struct ExternTriggerParamsT
enum ES_ClockTransition clockTransition;
enum ES_TriggerMode triggerMode;
enum ES_TriggerStartSignal startSignal;
long IMinimalTimeDelay;

};
Parameters 1..3: See description of appropriate
enumeration types.

191

IMinimalTimeDelay: The time delay between
trigger event and measurement.

Non- Parameter Command/Return Types

Lists all non- parameter command structures.
They are derived from the BasicCommandCT
(command-types; client to Server) and the
BasicCommandRT (return-types; Server to client).

192

struct InitializeCT

{
struct BasicCommandCT

¥
struct InitializeRT

struct BasicCommandRT

struct ReleaseMotorsCT

{
struct BasicCommandCT

};
struct ReleaseMotorsRT

struct BasicCommandRT

};

struct ActivateCameraViewCT

struct BasicCommandCT

}s

struct ActivateCameraViewRT

{
struct BasicCommandRT

};
struct ParkCT

struct BasicCommandCT

};
struct ParkRT

{
struct BasicCommandRT

};
struct GoBirdBathCT

struct BasicCommandCT

struct GoBirdBathRT

struct BasicCommandRT

};

packetinfo;

packetinfo;

packetinfo;

packetlinfo;

packetinfo;

packetinfo;

packetinfo;

packetlinfo;

packetinfo;

packetinfo;

struct GolLastMeasuredPointCT

{
struct BasicCommandCT

};

packetlinfo;

struct GolLastMeasuredPointRT

struct BasicCommandRT

};
struct ChangeFaceCT

{

struct BasicCommandCT
};
struct ChangeFaceRT

struct BasicCommandRT

packetlinfo;

packetinfo;

packetinfo;

struct StartNivelMeasurementCT

{
struct BasicCommandCT

};

packetinfo;

struct StartNivelMeasurementRT

struct BasicCommandRT

};
struct StartMeasurementCT

struct BasicCommandCT

¥

struct StartMeasurementRT

{

struct BasicCommandRT

packetlinfo;

packetinfo;

packetinfo;

193

};

struct StopMeasurementCT

{
};

struct StopMeasurementRT

struct BasicCommandCT packetinfo;

struct BasicCommandRT packetlinfo;

};

struct ExitApplicationCT
{

¥

struct ExitApplicationRT

struct BasicCommandCT packetinfo;

struct BasicCommandRT packetinfo;

struct ClearTransformationNominalPointListCT
{
};

struct ClearTransformationNominalPointListRT

struct BasicCommandCT packetinfo;

struct BasicCommandRT packetlinfo;

};
struct ClearTransformationActualPointListCT

struct BasicCommandCT packetinfo;

};
struct ClearTransformationActualPointListRT
{
struct BasicCommandRT packetinfo;
};

struct ClearDrivePointListCT
struct BasicCommandCT packetinfo;
struct ClearDrivePointListRT
{
};

struct BasicCommandRT packetlinfo;

SwitchLaserCT/RT

Command structures for switching the laser
on/off. The laser should only be switched off
during long breaks (overnight), while the
controller is not shut down. Switching laser on
again will take about 20 minute to stabilize!

struct SwitchLaserCT

{
struct BasicCommandCT packetinfo;
ES_BOOL b1sOn;

};
struct SwitchLaserRT

struct BasicCommandRT packetlinfo;

};

FindReflectorCT/RT

Command structures for invoking a 'Find
Reflector' sequence. dApproxDistance should be
specified in order to apply search radius

194

dependent on the distance from the tracker.
Approx distance is in current length units.

struct FindReflectorCT

struct BasicCommandCT packetinfo;
double dApproxDistance;

};
struct FindReflectorRT

struct BasicCommandRT packetlinfo;

};

The search time depends on the search radius
and timeout set by the SetSearchParams
command. Large search radii result in extended
search times unless limited by a reasonable
SearchTimeout. See ‘SetSearchParams’ for details.
The real search radius in addition depends on the
specified approx distance. An approx. distance,
which is 50% off the actual value, will also
influence the search radius by 50%. The system
cannot directly work with the radius. It calculates
horizontal and vertical angles for the tracker from
the specified search radius and approximate
Distance.

Although no range limitation for the approx
distance applies in theory, there is a practical
limitation given by tracker working space: 100
mm < approxDist <= 50000 mm. Note: the
minimum value is 101 mm, not 100 mm!

See also SearchParamsDataT.

Set/GetCoordinateSystemTypeCT/RT

Command structures for setting/getting the
current coordinate system type. The current CS-
type acts — like current units (and transformation
/ orientation parameters) — as a input/output
'Filter' to all coordinate-type related parameters.

195

struct SetCoordinateSystemTypeCT
{

struct BasicCommandCT packetinfo;
enum ES_CoordinateSystemType coordSysType;
}:
struct SetCoordinateSystemTypeRT

struct BasicCommandRT packetinfo;

struct GetCoordinateSystemTypeCT

{
struct BasicCommandCT packetlinfo;
}:
struct GetCoordinateSystemTypeRT
struct BasicCommandRT packetinfo;

enum ES_CoordinateSystemType coordSysType;

See enum 'ES_CoordinateSystemType' for details.

Set/GetMeasurementModeCT/RT

Command structures for setting/getting the
current measurement mode.

struct SetMeasurementModeCT

struct BasicCommandCT packetinfo;

enum ES_MeasMode measMode;
}:
struct SetMeasurementModeRT
{

struct BasicCommandRT packetinfo;
};

struct GetMeasurementModeCT

struct BasicCommandCT packetinfo;

struct GetMeasurementModeRT

{

struct BasicCommandRT packetinfo;
enum ES_MeasMode measMode;

};

See enum 'ES_MeasMode' for details.

Set/GetTemperatureRangeCT/RT

Command structures for setting/getting the active

laser tracker temperature range. A value different
than 'ES_TR_Medium' (default) should be
selected only if special environmental conditions

apply.

196

struct SetTemperatureRangeCT

{
struct BasicCommandCT packetinfo;
enum ES_TrackerTemperatureRange temperatureRange;

}:
struct SetTemperatureRangeRT
struct BasicCommandRT packetinfo;
struct GetTemperatureRangeCT
{
}:

struct GetTemperatureRangeRT

struct BasicCommandCT packetlinfo;

struct BasicCommandRT packetinfo;
enum ES_TrackerTemperatureRange temperatureRange;

See enum 'ES_TrackerTemperatureRange' for
details.

Set/GetStationaryModeParamsCT/RT

Command structures for setting/getting the
parameters for the Stationary Measurement
mode.

struct SetStationaryModeParamsCT
struct BasicCommandCT packetinfo;
struct StationaryModeDataT stationaryModeData;
struct SetStationaryModeParamsRT
{
}:

struct GetStationaryModeParamsCT

struct BasicCommandRT packetlinfo;

struct BasicCommandCT packetlinfo;

};
struct GetStationaryModeParamsRT
struct BasicCommandRT packetinfo;
struct StationaryModeDataT stationaryModeData;

};

See struct 'StationaryModeDataT' for details.

Set/GetContinuousTimeModeParamsCT/RT

Command structures for setting/getting the
parameters for the Continuous Time
Measurement mode.

197

struct SetContinuousTimeModeParamsCT

{
struct BasicCommandCT packetinfo;
struct ContinuousTimeModeDataT continuousTimeModeData;

}:

struct SetContinuousTimeModeParamsRT
struct BasicCommandRT packetinfo;

struct GetContinuousTimeModeParamsCT

{

}:

struct GetContinuousTimeModeParamsRT

struct BasicCommandCT packetlinfo;

struct BasicCommandRT packetinfo;
struct ContinuousTimeModeDataT continuousTimeModeData;

See struct 'ContinuousTimeModeDataT' for
details.

Set/GetContinuousDistanceModeParamsCT/RT

Command structures for setting/getting the
parameters for the Continuous Distance
Measurement Mode.

struct SetContinuousDistanceModeParamsCT
struct BasicCommandCT packetinfo;

struct ContinuousDistanceModeDataT
continuousDistanceModeData;

};
struct SetContinuousDistanceModeParamsRT
{

struct BasicCommandRT packetinfo;
};

struct GetContinuousDistanceModeParamsCT

struct BasicCommandCT packetinfo;

struct GetContinuousDistanceModeParamsRT

{
struct BasicCommandRT packetinfo;
struct ContinuousDistanceModeDataT
continuousDistanceModeData;

};

See struct 'ContinuousDistanceModeDataT' for
details.

Set/GetSphereCenterModeParamsCT/RT

Command structures for setting/getting the
parameters for the Sphere Center Measurement
mode.

198

struct SetSphereCenterModeParamsCT

{

struct BasicCommandCT packetinfo;
struct SphereCenterModeDataT sphereCenterModeData;
}:

struct SetSphereCenterModeParamsRT

struct BasicCommandRT packetinfo;

struct GetSphereCenterModeParamsCT

{
struct BasicCommandCT packetlinfo;
}:
struct GetSphereCenterModeParamsRT
struct BasicCommandRT packetinfo;
struct SphereCenterModeDataT sphereCenterModeData;

Se struct 'SphereCenterModeDataT" for details.

Set/GetCircleCenterModeParamsCT/RT

Command structures for setting/getting the
parameters for the Circle Center Measurement
Mode.

struct SetCircleCenterModeParamsCT
struct BasicCommandCT packetinfo;
struct CircleCenterModeDataT circleCenterModeData;
struct SetCircleCenterModeParamsRT
{
};

struct GetCircleCenterModeParamsCT

struct BasicCommandRT packetlinfo;

struct BasicCommandCT packetinfo;

struct GetCircleCenterModeParamsRT

struct BasicCommandRT packetinfo;
struct CircleCenterModeDataT circleCenterModeData;

}:
See struct 'CircleCenterModeDataT' for details.

Set/GetGridModeParamsCT/RT

Command structures for setting/getting the
parameters for the Grid Measurement mode.

199

struct SetGridModeParamsCT
{

struct BasicCommandCT packetinfo;
struct GridModeDataT gridModeData;
};
struct SetGridModeParamsRT
struct BasicCommandRT packetinfo;
struct GetGridModeParamsCT
{
};
struct GetGridModeParamsRT

struct BasicCommandCT packetlinfo;

struct BasicCommandRT packetinfo;
struct GridModeDataT gridModeData;

See struct 'GridModeDataT' for details.

Set/GetSystemSettingsCT/RT

Command structures for setting/getting the
system settings parameters.

struct SetSystemSettingsCT

struct BasicCommandCT packetinfo;
struct SystemSettingsDataT systemSettings;
}:
struct SetSystemSettingsRT
{
struct BasicCommandRT packetinfo;
};

struct GetSystemSettingsCT

struct BasicCommandCT packetinfo;

struct GetSystemSettingsRT
{

struct BasicCommandRT packetinfo;
struct SystemSettingsDataT systemSettings;

};
See struct 'SystemSettingsDataT' for details.

Set/GetUnitsCT/RT

Command structures for setting/getting the units'
settings. The current units act — like current CS-
type (and transformation / orientation
parameters) — as a input/output 'Filter' to all
Length/Angular/Meteo-type parameters.

200

struct SetUnitsCT
{

struct BasicCommandCT packetinfo;
struct SystemUnitsDataT unitsSettings;

}:
struct SetUnitsRT
struct BasicCommandRT packetinfo;
struct GetUnitsCT
{
}:
struct GetUnitsRT

struct BasicCommandCT packetlinfo;

struct BasicCommandRT packetinfo;
struct SystemUnitsDataT unitsSettings;

See struct 'SystemUnitsDataT" for details.

GetSystemStatusCT/RT

Command structures for getting the system
status.

struct GetSystemStatusCT

struct BasicCommandCT packetinfo;

struct GetSystemStatusRT

{
struct BasicCommandRT packetlinfo;
enum ES_ResultStatus lastResultStatus;
enum ES_TrackerProcessorStatus trackerProcessorStatus;
enum ES_LaserProcessorStatus laserStatus;
enum ES_ADMStatus admStatus;
struct ESVersionNumber esVersionNumber;
enum ES_WeatherMonitorStatus weatherMonitor;
long IFlagsValue;
long ITrackerSerialNumber;
};

See description of related enumeration types for
details.

The [FlagsValue member contains some additional
status information about the tracker/tracker
processor, for advanced programming.

The description of the nu bit of the I[FlagsValue
(start with least significant bit):

Bit Description

Bit 1 Reflector was found
Bit 2 Interferometer locked
Bit 3 Positioning complete
Bit 4 Tracker initialized

Bit 5 Calibration set

Bit 6 Tracker parked

201

Bit Description

Bit 7 Motor switch is on
Bit 8 Encoder angle error
Bit 9 Sleep condition set
Bit 10 Motor power active

GetTrackerStatusCT/RT

struct GetTrackerStatusCT

struct BasicCommandCT packetinfo;

};
struct GetTrackerStatusRT
{
struct BasicCommandRT packetinfo;
enum ES_TrackerStatus trackerStatus;
};

Command structures for getting the tracker
status.

See enum 'ES_TrackerStatus' for details.

Set/GetReflector(s)CT/RT

Command structures for getting/setting the

current reflector by its numerical ID.

struct SetReflectorCT
{

struct BasicCommandCT packetinfo;
int iInternalReflectorlid;

};
struct SetReflectorRT

struct BasicCommandRT packetinfo;

};
struct GetReflectorCT
{
struct BasicCommandCT packetinfo;
};
struct GetReflectorRT
struct BasicCommandRT packetinfo;
int iInternalReflectorlid;
};
struct GetReflectorsCT
{
struct BasicCommandCT packetinfo;
};
struct GetReflectorsRT
{
struct BasicCommandRT packetinfo;
int iTotalReflectors;
int iInternalReflectorlid;
enum ES_TargetType targetType;
double dSurfaceOffset;
short cReflectorName[32];
};

The GetReflectors command retrieves all reflectors
defined in the Tracker Server. The answer
consists of as many answer packets as reflector

202

types, defined in the server database. These
resolve the relation between reflector name
(string) and reflector ID (numerical). Each packet,
in addition (a redundancy), contains the total
number of reflectors, i.e. the total number of
packets to be expected (only for programmer's
convenience). Other properties are the targetType
and the surfaceOffset. Surface offset is in current
length units.

The reflector name is in Unicode format - short
cReflectorName[32] declaration. It can consist of a
maximum of 32 characters.

Each tracker- compensation has its own set of
reflector- definitions! However, the mapping
between reflector-name and ID remains the same
throughout all available tracker-compensations!

Example: A T-Cam is mounted on the tracker;
hence, the active tracker compensation is one that
was performed with a mounted camera. Assume
this tracker - compensation has definitions for
three valid reflectors as follows:

Name ID
CCR-75mm

CCR-1.5in
TBR-0.5in

Now, the T-Cam is removed, and hence another
tracker- compensation becomes active (one that
was performed without a mounted T-Cam). Let's
assume that this compensation has only two
reflector definitions: CCR-1.5in and TBR-0.5in.
Conveniently, the mapping between name and
ID remained the same as it was in the previous

compensation:
Name ID
CCR-1.5in 2
TBR-0.5in

203

If reflector ID 7 was the active one at the time the
camera was removed, you will now get a ‘'wrong
current reflector’ error message on executing
reflector- dependent commands. Thus, the
application must first set one of the now available
IDs 2 or 3 with the 'SetReflector' command.

The fact that the relation between reflector ID and
Name remains the same throughout all tracker-
compensations may be convenient to application
programmers since there is no need to re-query
all reflector mappings upon a tracker
compensation change.

Set/GetSearchParamsCT/RT
struct SetSearchParamsCT

{

struct BasicCommandCT packetlinfo;
struct SearchParamsDataT searchParams;

¥
struct SetSearchParamsRT

struct BasicCommandRT packetinfo;

struct GetSearchParamsCT

{

struct BasicCommandCT packetinfo;

};
struct GetSearchParamsRT

struct BasicCommandRT packetlinfo;
struct SearchParamsDataT searchParams;

Command structures for setting/getting the
reflector search parameter values.

The search time depends on the search radius.
Large search radii may result in extended search
times unless limited by a reasonable
SearchTimout.

See struct 'SearchParamsDataT' for details.

204

Set/GetAdmParamsCT/RT
struct SetAdmParamsCT
{

struct BasicCommandCT packetinfo;
struct AdmParamsDataT admParams;
};
struct SetAdmParamsRT
struct BasicCommandRT packetinfo;
struct GetAdmParamsCT
{
};
struct GetAdmParamsRT

struct BasicCommandCT packetlinfo;

struct BasicCommandRT packetinfo;
struct AdmParamsDataT admParams;

Command structures for setting/getting the
reflector search parameter values.

See struct 'AdmParamsDataT' for details.

Set/GetEnvironmentParamsCT/RT

struct SetEnvironmentParamsCT

struct BasicCommandCT packetlinfo;
struct EnvironmentDataT environmentData;

};
struct SetEnvironmentParamsRT
{
struct BasicCommandRT packetinfo;
};

struct GetEnvironmentParamsCT

struct BasicCommandCT packetinfo;

struct GetEnvironmentParamsRT

{
struct BasicCommandRT packetlinfo;
struct EnvironmentDataT environmentData;

};
Command structures for setting/getting the
environmental parameter values.

Environmental values are updated automatically
at regular intervals, if the weather monitor is on,
connected and the WeatherMonitorStatus (of
SystemSettings) is one of ES_WMS_ReadOnly or
ES_ WMS_ReadAndCalculateRefractions.

See struct 'EnvironmentDataT' for details.

205

Set/GetStationOrientationParamsCT/RT
struct SetStationOrientationParamsCT

{

struct BasicCommandCT packetinfo;
struct StationOrientationDataT stationOrientation;
};
struct SetStationOrientationParamsRT
struct BasicCommandRT packetinfo;
struct GetStationOrientationParamsCT
{
};

struct GetStationOrientationParamsRT

struct BasicCommandCT packetlinfo;

struct BasicCommandRT packetinfo;
struct StationOrientationDataT stationOrientation;

Command structures for setting/getting the
station orientation parameters. These settings act
— like current units and current CS-type —as a
input/output 'Filter' to all coordinate-type related
parameters.

See struct 'StationOrientationDataT' for details.

Set/GetTransformationParamsCT/RT

struct SetTransformationParamsCT
struct BasicCommandCT packetinfo;
struct TransformationDataT transformationData;
struct SetTransformationParamsRT
{
};

struct GetTransformationParamsCT

struct BasicCommandRT packetinfo;

struct BasicCommandCT packetlinfo;

};
struct GetTransformationParamsRT
struct BasicCommandRT packetinfo;
struct TransformationDataT transformationData;

};

Command structures for setting/getting the
transformation parameters. These settings act —
like current units and current CS-type —as a
input/output 'Filter' to all coordinate-type related
parameters.

See struct 'TransformationDataT' for details.

206

Set/GetBoxRegionParamsCT/RT
struct SetBoxRegionParamsCT

{

struct BasicCommandCT packetinfo;
struct BoxRegionDataT boxRegionData;
}:
struct SetBoxRegionParamsRT
struct BasicCommandRT packetinfo;
struct GetBoxRegionParamsCT
{
};

struct GetBoxRegionParamsRT

struct BasicCommandCT packetlinfo;

struct BasicCommandRT packetinfo;
struct BoxRegionDataT boxRegionData;

Command structures for setting/getting the Box
Region parameters.

See struct 'BoxRegionDataT' for details.

Set/GetSphereRegionParamsCT/RT

struct SetSphereRegionParamsCT

struct BasicCommandCT packetlinfo;
struct SphereRegionDataT sphereRegionData;

¥

struct SetSphereRegionParamsRT

{
};

struct GetSphereRegionParamsCT

struct BasicCommandRT packetinfo;

struct BasicCommandCT packetinfo;

struct GetSphereRegionParamsRT

{

struct BasicCommandRT packetlinfo;
struct SphereRegionDataT sphereRegionData;

};
Command structures for setting/getting the
sphere region parameters.

See struct 'SphereRegionDataT" for details.

GoPositionCT/RT

struct GoPositionCT

{
struct BasicCommandCT packetinfo;
double dvalil;
double dval2;
double dval3;
ES_BOOL bUseADM;

}:

struct GoPositionRT

{
struct BasicCommandRT packetinfo;

};

These are structures for invoking the GoPosition
command. Values are in current units / CS-type

207

and according to applied orientation /
transformation parameters. When bUseADM is
set, which is the normal case for this command,
an ADM measurement is performed and the IFM
distance is set to this new value. If ADM flag is
not set, the IFM distance is calculated from the
supplied coordinates and is set as the valid one.
To be used with caution!

The useADM flag should always be set for
trackers equipped with an ADM.

No range limitations apply to these parameters in
theory, but there is a practical limitation given by
tracker working volume.

GoPosition can be seen as a combination of

commands 'PointLaser’, followed by a
'FindReflector'.

The search time depends on the search radius.
Large search radii may result in extended search
times. A typical value is 0.05 m. An approx.
distance entry is required only for the

FindReflector command. UseADM should
normally be true for this command.

GoPositionHVDCT/RT

Structures for invoking the GoPositionHVD
command. Same as GoPosition with the input
parameters in a spherical (tracker-) coordinate
system type, irrespective of the current CS-type.
Values are in current units.

Range limitations apply with respect to the
tracker elevation limits. The useADM flag should
always be set for trackers equipped with an
ADM.

If ADM flag is not set, the provided distance is
taken as new IFM distance. To be used with
caution!

208

struct GoPositionHVDCT

{
struct BasicCommandCT packetinfo;
double dHzAngle;
double dvtAngle;
double dDistance;
ES_BOOL bUseADM;

};

struct GoPositionHVDRT

struct BasicCommandRT packetinfo;

};

The search time depends on the search radius.
Large search radii result in extended search times
unless limited by a reasonable SearchTimeout. A
typical value is 0.05 m.

"UseADM’ should normally be true for this
command.

See also command 'SetSearchParams'.

PositionRelativeHVCT/RT

Structures for invoking the PositionRelativeHV
command. The input parameters are angles in the
current units. The angles are prefixed with +/-
(clockwise is + and anti clockwise is -), to specify
the direction of movement. In contrast to the
MoveHV command, PositionRelative means a

one-time movement.
struct PositionRelativeHVCT

{
struct BasicCommandCT packetlinfo;
double dHzVal;
double dvtval;

}:

struct PositionRelativeHVRT

struct BasicCommandRT packetlinfo;

PointLaserCT/RT

Structures for invoking the PointLaser command.
The input parameters are in current units / CS-
type and according to applied orientation /
transformation parameters.

209

struct PointLaserCT

{
struct BasicCommandCT packetinfo;
double dvall;
double dval2;
double dval3;

}:

struct PointLaserRT

struct BasicCommandRT packetinfo;

¥

PointLaserHVDCT/RT

Structures for invoking the PointLaserHVD
command. Same as PointLaser with the input
parameters in a spherical coordinate system type,
irrespective of the selected CS. Values are in

current units.
struct PointLaserHVDCT

struct BasicCommandCT packetinfo;

double dHzAngle;
double dvtAngle;
double dDistance;

};
struct PointLaserHVDRT

struct BasicCommandRT packetinfo;

MoveHVCT/RT

Structures for invoking the MoveHV command.
The input parameters are vertical/horizontal
speed values between 1% and 100% of the
maximum speed of the tracker.

Use 0 value(s) to stop a previously started
movement. MoveHV can be called repeatedly
with varying speed values in order to change
moving speed. No stop is required in- between.
In contrast to the PositionRelative command,
MoveHV does not mean a one-time movement.
The MoveHV command rather means 'Start
movement'.

struct MoveHVCT
struct BasicCommandCT packetinfo;
int iHzSpeed;
int iVtSpeed;

};

struct MoveHVRT

struct BasicCommandRT packetinfo;

The speed parameters are prefixed with +/-
(clockwise is + and anti clockwise is -), to specify

210

the direction of movement.

GoNivelPositionCT/RT
struct GoNivelPositionCT

{
struct BasicCommandCT packetlinfo;
enum ES_NivelPosition nivelPosition;

};
struct GoNivelPositionRT

struct BasicCommandRT packetinfo;

Structures for invoking the GoNivelPosition
command in the orient to gravity procedure. The
input parameters are the pre-defined 'Nivel'
positions (1 to 4). This command is mainly used
for the 'Orient to Gravity' command. It is rarely
used by applications unless an own orient to
Gravity procedure is implemented.

The tracker head moves at a slow speed to
minimize affecting the 'Nivel' sensor.

LookForTargetCT/RT

Structures for invoking the LookForTarget
command. The input parameters are in the
selected CS-type / units. The output parameters
are always angles related to the tracker
coordinate system in the current angle unit
settings.

This command is mainly used for LT- series of
trackers (without ADM). For LTD/AT trackers,
rather use 'GoPosition' instead.

struct LookForTargetCT

{
struct BasicCommandCT packetinfo;
double dvalil;
double dval2;
double dval3;
double dSearchRadius;
};

struct LookForTargetRT

struct BasicCommandRT packetinfo;

double dHzAngle;

double VtAngle;
};
The search time depends on the search radius.
Large search radii result in extended search

times. A typical value is 0.05 m; The default value

211

is 0.04 m.

GetDirectionCT/RT

Structures for invoking the GetDirection
command. The output parameters are always
angles related to the tracker coordinate system in
the current angle unit settings.

This command is mainly useful for LT- series of
trackers (in combination with LookForTarget).

struct GetDirectionCT

struct BasicCommandCT packetlinfo;

};
struct GetDirectionRT

struct BasicCommandRT packetinfo;
double dHzAngle;
double dvtAngle;

Set/GetStatisticModeCT/RT

Command structures for setting/getting the
statistic mode. Depending on the mode,
stationary and/or continuous 3D measurement
packets will contain more or less statistical
information. Note that different data packets for
the measurement apply depending on which
mode is used.

See enum 'ES_StatisticMode' description for
details.

struct SetStatisticModeCT

struct BasicCommandCT packetinfo;
enum ES_StatisticMode stationaryMeasurements;
enum ES_StatisticMode continuousMeasurements;

};
struct SetStatisticModeRT

struct BasicCommandRT packetinfo;
}:
struct GetStatisticModeCT

struct BasicCommandCT packetinfo;

};
struct GetStatisticModeRT
{
struct BasicCommandRT packetinfo;
enum ES_StatisticMode stationaryMeasurements;
enum ES_StatisticMode continuousMeasurements;
}:

Changing the statistical mode is for advanced
purposes only. Default statistical mode is
'Standard’ and ensures compatibility to earlier

212

versions.

Set/GetCameraParamsCT/RT

Command structures for setting/getting the
Camera parameters.

See also description of struct
'‘CameraParamsDataT".

struct SetCameraParamsCT

struct BasicCommandCT packetinfo;
struct CameraParamsDataT cameraParams;
};
struct SetCameraParamsRT
{
struct BasicCommandRT packetinfo;
};

struct GetCameraParamsCT

struct BasicCommandCT packetlinfo;

struct GetCameraParamsRT

{

struct BasicCommandRT packetinfo;
struct CameraParamsDataT cameraParams;

};

AddDrivePointCT/RT

Command to add a point to the Drive Point List
to be used by the Intermediate Compensation
process. See chapter ' Intermediate Compensation

'in main chapter 8 for details.
struct AddDrivePointCT

{
struct BasicCommandCT packetlinfo;
int iInternalReflectorlid;
double dvall;
double dval2;
double dval3;
};
struct AddDrivePointRT
{
struct BasicCommandRT packetlinfo;
};

CallOrientToGravityCT/RT

Command structures for executing an ‘Orient To
Gravity’ process (including reception of results).

Results are in current angle units. Typically, the
value dOmega and dPhi are set as dRot1 and
dRot2 parameters of StationOrientationDataT, to
be passed with the SetStationOrientationParams
command.

213

See special chapter 'Orient to Gravity procedure'
in chapter 8.

struct CallOrientToGravityCT
{

struct BasicCommandCT packetinfo;

}:

struct CallOrientToGravityRT
struct BasicCommandRT packetlinfo;
double dOmega;
double dPhi;

¥
Error codes

A return status other than ES_RS_AIIOK (0)
means that the command could not be completed.
In addition to the values defined in
ES_ResultStatus, the CallOrientToGravity
command answer status can evaluate to one of
the following values:

Code Description

20010 An unknown error occurred (F)
20011 Socket initialization failed (F)
20012 OLE/COM initialization failed (F)
20013 Reading resource string failed (F)
20014 Error on sending data

20015 Error on receiving data

20016 No answer within reasonable time

20017 Error on saving results to database (F)

20018 Too many retries due to unstable Nivel
liquid

20019 Invalid count of samples specified(min 2,
max 10)

20020 There was an unexpected command
answer

20021 (Some) Nivel results out of valid range

20022 No Nivel connected, or Nivel flagged off

20023 /POS270 or /POS90 expected as
command line argument (F)

20024 Process terminated from outside

Errors marked with (F) are unanticipated fatalities.

214

CallintermediateCompensationCT/RT

Command structures for executing an
'Intermediate Compensation' sequence (including
reception of quality result parameters). TotalRMS
and maxDev are angular values and are in
current angle units.

For details see special chapter 'Intermediate
Compensation procedure' in chapter 8.

struct CalllntermediateCompensationCT

struct BasicCommandCT packetinfo;

struct CalllntermediateCompensationRT

struct BasicCommandRT packetinfo;
double dTotalRMS;
double dMaxDev;

long IWarningFlags;

¥
Error codes

A return status other than ES_RS_AIIOK (0)
means that the command could not be completed.
In addition to the values defined in
ES_ResultStatus, the CalllntermediateCompensation
command answer status can evaluate to one of
the following values.

Code Description

23011 EmScon database open failure (F)
23012 EmScon database read failure (F)

23013 EmScon database write failure (F)

23014 No points to measure in database

23015 Creation of compensation failed

23016 Saving / Updating of compensation
failed

23017 Reading Drive-Point failed

23018 An 'In-work' compensation already
exists

23019 Failed to delete 'In-work' compensation
(F)

23020 Measurement timeout expired

23021 Getting tracker parameters failed

23022 Setting tracker parameters failed

215

23023 Timeout in Positioning (no reflector
within searched range?)

23030 There was a command answer other than
OK (Unknown error)

23031 Sending data via TCP/IP failed (F)

23032 Error on receiving data (communication
error) (F)

23033 Process terminated from outside

23501 At least one of the 3 calculated
mechanical parameters is not in range
specified.

23502 Too few (less than 2) measurements
available. Calculation cannot be
performed. Either not enough driving
points, or not all could be found and/or

measured.

23503 Minimum vertical angle difference not
met

23998 An unsolicited error occurred (F)

23999 Unknown error (F)

Errors marked with (F) are unanticipated fatalities.

Warning flags

Warning flags are available upon a successful
compensation (Status ES_RS_AIIOK [=0]). The
parameter [WarningFlags is a 32-bit value. If the
value is zero (none of the bits set), then the
intermediate compensation process completed
with no warnings. Otherwise, each raised bit
means a particular warning. There can be more
than one warning at a time.

Currently, the following warnings are possible:

Bit 1 AverageVerticalTwoFaceErrorlsTooHigh:

(0x1) Tracker service (from Leica Geosystems
personnel) is required because the vertical
index is constantly > 1 Gon. There is
currently no way for the user to reset the
approximate index.

216

Bit 2 AtLeastOneVerticalTwoFaceErrorlsTooHig
(0x2) h:
If Bit 1 not raised, there is probably a very
high error within a single two-face
measurement.

If Bit 1 is raised too, ignore warning Bit 2.

Bit 3 AtLeastOneDistancelsNotInRange:

(0x4) At least one of the distances is smaller than
the minimum or larger than the maximum
recommended distance, according to the
recommendations.

Bit 4 NotEnoughMeasInTwoOppositeVerticalPl
(0x8) anesWithGoodDiffOfVertical Angle:
This warning covers all (except the range
criterion) possible criteria, which are not
fulfilled by the measurement configuration,
according to the recommendations.

Bit 5 NotAllCorrectedDoubledTwoFaceErrorsAr
(0x10) eWithinCompensationTolerance:
Not all measurement residuals are within
recommended tolerances.
Bit 6 NotAllMechanicalParametersAreInRange:

(0x20) Not all three (3) mechanical parameters
calculated are within recommended
tolerance (according to hardware specs).

The IWarningFlags value is a decimal value. Use a
scientific calculator to convert this value to a
binary value to visualize the flagged bits.

Programmatically (in C/C++), a particular bit is
set if the following expression evaluates to TRUE.

(IWarningFlags & dwCode) // where dwCode is one of the Masks
// shown above. For example. 0x10
// tests for 5th bit. See C- reference
// for details (bit operations)

CallTransformationCT/RT

Command structures for executing an
‘Transformation” process (including reception of
results). Result values are in current units CS-
type . See chapter "Transformation Procedure' in
chapter 8 for details.

217

struct CallTransformationCT

{
struct BasicCommandCT packetinfo;

¥

struct CallTransformationRT

{
struct BasicCommandRT packetinfo;
double dTransvalil;
double dTransval2;
double dTransval3;
double dRotVall;
double dRotVal2;
double dRotVal3;
double dScale;
double dTransStdvall;
double dTransStdval2;
double dTransStdval3;
double dRotStdvall;
double dRotStdval2;
double dRotStdval3;
double dScaleStd;
double dRMS;
double dMaxDev;
double dVarianceFactor;

};

Error codes

A return status other than ES_RS_AIIOK (0)
means that the command could not be completed.
In addition to the values defined in
ES_ResultStatus, the CallTransformation command
answer status can evaluate to one of the following
values:

Code Description

24010 OLE/COM initialization failed (F)
24011 Reading resource string failed (F)

24012 Error on reading input data from
database (F)
24013 Error on saving results to database (F)

24020 Least Squares Fit failed

24021 Initial Approximation for Fit failed
24022 Too many unknown nominals
24023 Multiple solutions found

Errors marked with (F) are unanticipated fatalities.

Set/GetTransformationlnputParamsCT/RT

Command structures for setting/getting the
transformation Input parameters. These are used
as input for the Transformation calculation
process to fix/weight transformation result
parameters.

218

See struct "TransformationInputDataT" for
details. Also see Section 9.2 .

struct SetTransformationlnputParamsCT

{
struct BasicCommandCT packetinfo;
struct TransformationlnputDataT transformationData;

}:
struct SetTransformationlnputParamsRT

struct BasicCommandRT packetinfo;

struct GetTransformationlnputParamsCT

{
};

struct GetTransformationlnputParamsRT

struct BasicCommandCT packetlinfo;

struct BasicCommandRT packetlinfo;
struct TransformationlnputDataT transformationData;

AddTransformationNominalPointCT/RT

Command structures for adding a Point to the
Nominal point list. See struct
"TransformationPointT ' and also chapter
"Transformation Procedure’ in chapter 8 for
details.

struct AddTransformationNominalPointCT

struct BasicCommandCT packetinfo;
struct TransformationPointT transformationPoint;

};

struct AddTransformationNominalPointRT

{
}s

struct BasicCommandRT packetinfo;

AddTransformationActualPointCT/RT

Command structures for adding a Point to the
actual point list. See struct 'TransformationPointT
"and also chapter "Transformation Procedure’ in
chapter 8 for details.

struct AddTransformationActualPointCT

struct BasicCommandCT packetlinfo;
struct TransformationPointT transformationPoint;

struct AddTransformationActualPointRT

struct BasicCommandRT packetinfo;

};

GetTransformedPointsCT/RT

Command structures for retrieving the
transformed points and residuals after a
successful transformation. Result values are in
current units and CS- type (like nominal points).

219

This command results in as many result packets
as specified points through the nominal/actual
input points list. This approach is similar to the
GetReflectors command. See chapter
"Transformation Procedure' in chapter 8 for
details.

Residuals are the difference between the nominal
and the transformed actual points.

struct GetTransformedPointsCT

struct BasicCommandCT packetlinfo;

};
struct GetTransformedPointsRT

struct BasicCommandRT packetinfo;

int iTotalPoints;
double dvall;

double dval2;

double dval3;

double dStdDev1l;
double dStdDev2;
double dStdDev3;
double dStdDevTotal ;
double dCovaril2;
double dCovaril3;
double dCovar23;
double dResidualvall;
double dResidualVval2;
double dResidualVal3;

GetStillimageCT/RT

Command structures for getting a camera still
image. The data is delivered as a BMP file. Jpeg
format is not supported yet. The result is a binary
block (given by start address and size) in 'File'
format. It can directly be viewed with a bitmap

viewer.

struct GetStilllmageCT

{
struct BasicCommandCT packetinfo;
enum ES_StilllmageFileType imageFileType;

};

struct GetStilllmageRT
struct BasicCommandRT packetinfo;
enum ES_StilllmageFileType imageFiletype;
long IFileSize;
char cFileStart;

};

Only the BMP format is currently supported.

GoBirdBath2CT/RT

Command structures for driving the laser to the
Bird bath, either in clockwise or counter
clockwise direction.

220

struct GoBirdBath2CT
{
struct BasicCommandCT packetinfo;
ES_BOOL bClockWise;
}:
struct GoBirdBath2RT

struct BasicCommandRT packetinfo;

GetCompensationCT/RT

Command structures to read the currently active
Compensation ID.

struct GetCompensationCT

{
struct BasicCommandCT packetlinfo;
}:
struct GetCompensationRT
struct BasicCommandRT packetinfo;
int iInternalCompensationld;

};

SetCompensationCT/RT

Command to activate one of the intermediate
tracker compensations delivered by
GetCompensations by its ID.

struct SetCompensationCT

struct BasicCommandCT packetinfo;
int iInternalCompensationld;

}:
struct SetCompensationRT

struct BasicCommandRT packetlinfo;

};

GetCompensationsCT/RT

Command structures to read all Tracker
Compensations stored in the database.
Particularly, the relation between ID and
compensation name is given. As many packets as
compensations exist are delivered (similar to the
GetReflectors command.

221

struct GetCompensationsCT

{
struct BasicCommandCT packetinfo;
};
struct GetCompensationsRT
{
struct BasicCommandRT packetinfo;
int iTotalCompensations;
int iInternalCompensationld;
unsigned short cTrackerCompensationName[32];
unsigned short cTrackerCompensationComment[128];
unsigned short cADMCompensationName[32] ;
ES_BOOL bHasMeasurementCameraMounted;
}:

GetCompensations2CT/RT

Enhanced version of GetCompensationsCT/RT
with some additional information.
GetCompensationsCT/RT has been left only for
backward compatibility. Newer applications
should use GetCompensations2CT/RT.

struct GetCompensations2CT

{
struct BasicCommandCT packetinfo;

};

struct GetCompensations2RT
struct BasicCommandRT packetinfo;
int iTotalCompensations;
int iInternalCompensationld;
unsigned short cTrackerCompensationName[32];
unsigned short cTrackerCompensationComment[128];
unsigned short cADMCompensationName[32] ;
unsigned short cADMCompensationComment[128];
ES_BOOL bHasMeasurementCameraMounted;
ES_BOOL blsActive;

};

Note: We do no longer recommend evaluating
the 'bIsActive' flag in your application! This flag
is redundant information which should better be
asked by using the 'GetCompensation' call (which
should have been named better
'GetActiveCompensation').

GetCompensations2 (that is, querying all
compensations the system currently 'knows') is a
rather expensive call. A well- designed
application usually does such a call upon start-up
and then only when a compensation is being
added to or removed from the system (which is
not a everyday- task).

While this list remains unchanged in memory, the
active compensation may change quite often
during runtime. It would be awkward if we
always had to reload the entire list just because
the active compensation has changed. However,

222

if we would rely on the 'bIsActive' flag, we would
have to do so! So better use GetCompensation() to
figure out the currently active compensation and
do not rely on the 'bIsActive' in the
compensations list. This flag may only reliable
just after reading the list!

CheckBirdBathCT/RT

Command structures to check the Bird bath
position of the current, selected reflector. Values

are in current units.

struct CheckBirdBathCT
{

};
struct CheckBirdBathRT

struct BasicCommandCT packetinfo;

struct BasicCommandRT packetlinfo;
double dinitialHzAngle;

double dinitialVtAngle;

double dinitialDistance;

double dHzAngleDiff;

double dvtAngleDiff;

double dDistanceDiff;

GetTrackerDiagnosticsCT/RT

Command structures to read tracker diagnostic
data. This is a command mainly used for service
purposes.

struct GetTrackerDiagnosticsCT

struct BasicCommandCT packetinfo;

struct GetTrackerDiagnosticsRT

{
struct BasicCommandRT packetinfo;
double dTrkPhotoSensorXval;
double dTrkPhotoSensorYVval;
double dTrkPhotoSensorlival;
double dRefPhotoSensorXVval;
double dRefPhotoSensorYVval;
double dRefPhotoSensorlVval;
double dADConverterRange;
double dServoControlPointX;
double dServoControlPointY;
double dLaserLightRatio;
int iLaserControlMode;
double dSensorlnsideTemperature;
int iLCPRunTime;
int iLaserTubeRunTime;

GetADMInfoCT/RT

Command structures to read ADM-specific
properties and feature data. The tracker must be
equipped wit an ADM.

Note: with emScon V2.3, variable names have
changed from iFirmWare... to iFirmware... This

223

will not have any influence to existing
applications at runtime. Upon compilation with
the new API- include- files, these names need to
be adjusted in the code of the application.

struct GetADMInfoCT

struct BasicCommandCT packetinfo;

};

struct GetADMInfoRT

{
struct BasicCommandRT packetinfo;
int iFirmwareMajorVersionNumber;

int iFirmwareMinorVersionNumber;
int iSerialNumber;

GetNivelInfoCT/RT

Command structures to read 'Nivel' -specific
properties and feature data. The tracker must
have a Leica 'Nivel' inclination sensor connected
and enabled.

Note: with emScon V2.3, variable names have
changed from iFirmWare... to iFirmware... This
will not have any influence to existing
applications at runtime. Upon compilation with
the new API- include- files, these names need to
be adjusted in the code of the application.

struct GetNivellnfoCT

{
struct BasicCommandCT packetlinfo;
}:
struct GetNivelInfoRT
{
struct BasicCommandRT packetinfo;

int iFirmwareMajorVersionNumber;
int iFirmwareMinorVersionNumber;
int iSerialNumber;

GetTPInfoCT/RT

Command structures to read TP-specific
properties and feature data. This is a command
mainly used for service purposes.

Note: with emScon V2.3, variable names have
changed from iFirmWare... to iFirmware... This
will not have any influence to existing
applications at runtime. Upon compilation with
the new API- include- files, these names need to
be adjusted in the code of the application.

224

struct GetTPInfoCT
{

¥

struct GetTPInfoRT
{

struct BasicCommandCT packetinfo;

struct BasicCommandRT packetinfo;

int iTPBootMajorVersionNumber;

int iTPBootMinorVersionNumber;

int iTPFirmwareMajorVersionNumber;

int iTPFirmwareMinorVersionNumber;

int iLCPFirmwareMajorVersionNumber;

int iLCPFirmwareMinorVersionNumber;

enum ES_TrackerProcessorType trackerprocessorType;
enum ES_TPMicroProcessorType microProcessorType;
int iMicroProcessorClockSpeed;

enum ES_LTSensorType laserTrackerSensorType;

SetLaserOnTimerCT/RT

Command structure to set the time in hours and
minutes (rounded off to nearest % hour block) to
start the laser previously switched-off by a
SwitchLaser(off) command. The tracker controller
and emScon server must be switched on. Since
the laser takes about 20 minutes to stabilize, this
command is useful to program laser-on in the
morning so the system is ready when work is
scheduled to begin.

The laser can be independently switched off.

struct SetLaserOnTimerCT

{
struct BasicCommandCT packetinfo;
int iLaserOnTimeOffsetHour;
int iLaserOnTimeOffsetMinute;
};

struct SetLaserOnTimerRT

struct BasicCommandRT packetlinfo;

};

GetLaserOnTimerCT/RT

Command structures to read the time left in
hours and minutes (rounded off to nearest %4
hour block), to start the laser. A system restart
sets this value to zero. The tracker processor /
emScon server must be switched on.

225

struct GetLaserOnTimerCT

{
¥

struct GetLaserOnTimerRT

struct BasicCommandCT packetinfo;

struct BasicCommandRT packetinfo;
int iLaserOnTimeOffsetHour;
int iLaserOnTimeOffsetMinute;

};

ConvertDisplayCoordinatesCT/RT

Command structures to call the
DisplayCoordinateConversion function.
DisplayCoordinateConversion is a private
function/command and is not
documented/supported. It should not be used for

any client programming
struct ConvertDisplayCoordinatesCT

struct BasicCommandCT packetinfo;
enum ES_DisplayCoordinateConversionType conversionType;
double dvall;
double dval2;
double dval3;

};

struct ConvertDisplayCoordinatesRT
struct BasicCommandRT packetinfo;
double dvall;
double dval2;
double dval3;

¥

Set/GetTriggerSourceCT/RT

Command structures to Set/Get Trigger Source.
See enum 'ES_TriggerSource' for details.

struct SetTriggerSourceCT
{

struct BasicCommandCT packetinfo;
enum ES_TriggerSource triggerSource;
};
struct SetTriggerSourceRT

struct BasicCommandRT packetinfo;

struct GetTriggerSourceCT

{
struct BasicCommandCT packetlinfo;
}:
struct GetTriggerSourceRT
{
struct BasicCommandRT packetinfo;
enum ES_TriggerSource triggerSource;
GetFaceCT/RT

Command structures to query current Tracker Face,
whether in Face | or Face Il position.

226

struct GetFaceCT

{
struct BasicCommandCT packetinfo;
};
struct GetFaceRT
{
struct BasicCommandRT packetinfo;
enum ES_TrackerFace trackerFace;
}:
GetCamerasCT/RT

Command structure to get Measurement Camera
properties. The GetCameras command retrieves
all measurement cameras (T-Cams) defined. The
answer consists of as many answer packets as
cameras are defined in the server database. These
resolve the relation between camera name (string)
and camera ID (numerical). Each packet, in
addition (a redundancy), contains the total
number of cameras, i.e. the total number of
packets to be expected (only for programmer's
convenience). Other properties, such as
cameraType, serial Number, comment, etc. serve
as information, mainly used for user-interface
purpose.

struct GetCamerasCT

struct BasicCommandCT packetinfo;

};

struct GetCamerasRT

{
struct BasicCommandRT packetinfo;
int iTotalCameras;
int ilnternalCamerald;
long I1SerialNumber;
enum ES_MeasurementCameraType cameraType;
unsigned short cName[32];
unsigned short cComment[128];

};

GetCameraCT/RT

Command structure to get the ID of the active
Camera. The GetCamera command delivers the
currently active measurement camera by its ID
(Currently set as the active one in the database).
However, since this camera may have been
removed, an additional flag indicates whether the
active camera is mounted or not.

227

struct GetCameraCT

{
struct BasicCommandCT packetinfo;
};
struct GetCameraRT
{
struct BasicCommandRT packetinfo;
int iInternalCamerald;
ES_BOOL bMeasurementCameralsMounted;
}:

Set/GetMeasurementCameraModeCT/RT

Command structures for setting/getting the
measurement camera mode.

struct SetMeasurementCameraModeCT

{
struct BasicCommandCT packetinfo;
enum ES_MeasurementCameraMode cameraMode;
};
struct SetMeasurementCameraModeRT
{

struct BasicCommandRT packetinfo;

struct GetMeasurementCameraModeCT

{
struct BasicCommandCT packetlinfo;
}:
struct GetMeasurementCameraModeRT
{
struct BasicCommandRT packetinfo;
enum ES_MeasurementCameraMode cameraMode;
GetProbesCT/RT

Command structure to get Probe properties.
GetProbes command retrieves all probes defined
in the Tracker Server. The answer consists of as
many answer packets as probes are defined in the
server database. These resolve the relation
between probe name (string) and probe ID
(numerical). Each packet, in addition (a
redundancy), contains the total number of
probes, i.e. the total number of packets to be
expected (only for programmer's convenience).
Other properties, such as probeType, serial
Number, comment, etc. serve as information,
mainly used for user-interface purpose.

228

struct GetProbesCT

{
struct BasicCommandCT packetinfo;

};

struct GetProbesRT

{
struct BasicCommandRT packetinfo;
int iTotalProbes;
int ilnternalProbeld;
long I1SerialNumber;
enum ES_ProbeType probeType;
int iNumberOfFields;
unsigned short cName[32];
unsigned short cComment[128];

};

GetProbeCT/RT

Command structure to get the ID of active Probe.
The GetProbe command delivers the currently
active probe by its ID (Currently set as the active

one in the database).

struct GetProbeCT
{

};
struct GetProbeRT

struct BasicCommandCT packetlinfo;

struct BasicCommandRT packetinfo;
int ilnternalProbeld;

GetTipAdaptersCT/RT

Command structure to get measurement Tip
properties. The GetTipAdapters command
retrieves all tip adapters defined for the Tracker
Server. The answer consists of as many answer
packets as tips adapters are defined in the server
database. These resolve the relation between tip
name (string) and tip adapter ID (numerical).
Each packet, in addition (a redundancy), contains
the total number of tip adapters, i.e. the total
number of packets to be expected (only for
programmer's convenience). Other properties,
such as tipType, serial Number, comment, etc.
serve as information, mainly used for user-
interface purpose.

229

struct GetTipAdaptersCT
{

struct BasicCommandCT packetinfo;

};

struct GetTipAdaptersRT
struct BasicCommandRT packetinfo;
int iTotalTips;

int

ilnternalTipAdapterld;

long IAssemblyld;

long I1SerialNumberLowPart;
long I1SerialNumberHighPart;
enum ES_TipType tipType;

double dRadius;

double dLength;

unsigned short cName[32];

unsigned short cComment[128];

GetTipAdapterCT/RT

Command structures to get the ID of active Tip
Adapter. The GetTipAdapter command delivers
the currently active tip adapter by its ID
(Currently set as the active one in the database).
In addition to the ID, the adapter number, to
which the tip is attached, is returned.

struct GetTipAdapterCT

struct BasicCommandCT packetlinfo;
struct GetTipAdapterRT
{
struct BasicCommandRT packetinfo;
int ilnternalTipAdapterld;
int iTipAdapterinterface;
}:

Get/SetTCamToTrackerCompensationsCT/RT

Command structures to get T-Cam To Tracker
Compensation properties. The
GetTCamToTrackerCompensations command
retrieves all such compensations defined in the
Tracker Server. The answer consists of as many
answer packets as tips are defined in the server
database. These resolve the relation between
compensation name (string) and compensation
ID (numerical). Each packet, in addition (a
redundancy), contains the total number of
compensations, i.e. the total number of packets to
be expected (only for programmer's convenience).
Other properties, such as tracker Serial Number,
comment, etc. serve as information, mainly used
for user-interface purpose. There is a flag

230

bIsActive, which is true for exactly one
compensation.

struct GetTCamToTrackerCompensationsCT

struct BasicCommandCT packetinfo;

}:
struct GetTCamToTrackerCompensationsRT
{
struct BasicCommandRT packetinfo;
int iTotalCompensations;
int iInternalTCamToTrackerCompensationld;
int iInternalTrackerCompensationld;
int ilnternalCamerald;
ES_BOOL blsActive;
long ITrackerSerialNumber;
unsigned short cTCamToTrackerCompensationName[32];
unsigned short cTCamToTrackerCompensationComment[128];

};

Note: We do no longer recommend evaluating
the 'bIsActive' flag in your application! This flag
is redundant information which should better be
asked by using the
'GetTCamToTrackerCompensation' call (which
should have been named better
'GetActiveTCamToTrackerCompensation').

GetTCamToTrackerCompensations (that is,
querying all compensations the system currently
'knows') is a rather expensive call. A well-
designed application usually does such a call
upon start-up and then only when a
compensation is being added to or removed from
the system (which is not a everyday- task).

While this list remains unchanged in memory, the
active compensation may change quite often
during runtime. It would be awkward if we
always had to reload the entire list just because
the active compensation has changed. However,
if we would rely on the 'bIsActive' flag, we would
have to do so! So better use
GetTCamToTrackerCompensation() to figure out
the currently active compensation and do not rely
on the 'bIsActive' in the compensations list. This
flag may only reliable just after reading the list!

231

Get/SetTCamToTrackerCompensationCT/RT

Command structures to get/set the ID of the
active T-Cam to tracker compensation. The
Get/SetTCamToTrackerCompensation command
takes/delivers the compensation ID as parameter.

struct SetTCamToTrackerCompensationCT

struct BasicCommandCT packetinfo;

int iInternalTCamToTrackerCompensationld;
};
struct SetTCamToTrackerCompensationRT
{
struct BasicCommandRT packetinfo;
}:

struct GetTCamToTrackerCompensationCT

struct BasicCommandCT packetinfo;

}:
struct GetTCamToTrackerCompensationRT
{
struct BasicCommandRT packetinfo;
int iInternalTCamToTrackerCompensationld;
}:

GetProbeCompensationsCT/RT

Command structure to get Probe Compensation
properties. The GetProbeCompensations
command retrieves all such compensations
defined in the Tracker Server. The answer
consists of as many answer packets as probes are
defined in the server database. These resolve the
relation between compensation name (string) and
compensation ID (numerical). Each packet, in
addition (a redundancy), contains the total
number of compensations, i.e. the total number of
packets to be expected (only for programmer's
convenience). Other properties, such as tracker
Serial Number, comment, etc. serve as
information, mainly used for user-interface
purpose. There is a flag bIsActive, which is true
for exactly one compensation.

232

struct GetProbeCompensationsCT

{
¥

struct BasicCommandCT packetinfo;

struct GetProbeCompensationsRT

struct BasicCommandRT packetinfo;

int iTotalCompensations;

int iInternalProbeCompensationld;
int iInternalProbeld;

int iFieldNumber;

ES_BOOL blsActive;

ES_BOOL bMarkedForExport;

ES_BOOL bPreliminary;

unsigned short cProbeCompensationName[32] ;
unsigned short cProbeCompensationComment[128] ;

};

Note: See important note about 'bIsActive' flag in
the chapter describing the command
GetTCamToTrackerCompensations. The same
applies to Probe compensations: We do no longer
recommend evaluating the 'blsActive' flag.
Rather use GetProbeCompensation() to ask for
the currently active probe!

Get/SetProbeCompensationCT/RT

Command structures to get/set the ID of active
Probe compensation. The
Get/SetProbeCompensation command
takes/delivers the compensation ID as only
parameter.

struct SetProbeCompensationCT

struct BasicCommandCT packetinfo;
int ilnternalProbeCompensationid;

}:

struct SetProbeCompensationRT

{ struct BasicCommandRT packetinfo;
}:

?truct GetProbeCompensationCT

struct BasicCommandCT packetinfo;

struct GetProbeCompensationRT

{

struct BasicCommandRT packetinfo;
int iInternalProbeCompensationld;

GetTipToProbeCompensationsCT/RT

Command structures to get Tip-to-probe
compensation properties. The
GetTipToProbeCompensations command
retrieves all such compensations defined in the

233

Tracker Server. The answer consists of as many
answer packets as tips are defined in the server
database. These resolve the relation between
compensation name (string) and compensation
ID (numerical). Each packet, in addition (a
redundancy), contains the total number of
compensations, i.e. the total number of packets to
be expected (only for programmer's convenience).
Other properties, such as underlying probe
compensations, comment, etc. serve as
information, mainly used for user-interface
purpose.

This command should no longer be used. It is
only kept for compatibility reasons. Rather use
'GetTipToProbeCompensations2' (Introduced
with emScon 2.4)

struct GetTipToProbeCompensationsCT

struct BasicCommandCT packetinfo;

};
struct GetTipToProbeCompensationsRT
{
struct BasicCommandRT packetinfo;
int iTotalCompensations;
int ilnternalTipToProbeCompensationid;
int ilnternalTipAdapterld;
int iTipAdapterinterface;
int iInternalProbeCompensationld;
ES_BOOL bMarkedForExport;
unsigned short cTipToProbeCompensationName[32] ;
unsigned short cTipToProbeCompensationComment[128];
}:

GetTipToProbeCompensations2CT/RT

Command structures to get Tip-to-probe
compensation properties. This struct applies to
the extended version of the former command
GetTipToProbeCompensations, which is only
kept for compatibility reasons. New applications
should always use
'GetTipToProbeCompensations 2' and the related
'GetTipToProbeCompensations2CT/RT" structs.
The only difference to the former struct (see
above) are the new properties
‘compensationType' and 'shank compensation
name'.

234

struct GetTipToProbeCompensations2CT

{
struct BasicCommandCT packetinfo;

};

struct GetTipToProbeCompensations2RT

{
struct BasicCommandRT packetinfo;
int iTotalCompensations;
int ilnternalTipToProbeCompensationid;
int ilnternalTipAdapterld;
int iTipAdapterinterface;
int iInternalProbeCompensationld;
ES_BOOL bMarkedForExport;
enum ES_TipToProbeCompensationType compensationType;
unsigned short cTipToProbeCompensationName[32];
unsigned short cTipToProbeCompensationComment[128];
unsigned short cShankCompensationName[32] ;

}:

GetTipToProbeCompensationCT/RT

Command structures to get the ID of active Tip to
Probe- compensation. There is no related 'Set'
command since detection is automatic. The
GetTipToProbeCompensation command delivers
the compensation ID as only parameter.

struct GetTipToProbeCompensationCT
{

struct BasicCommandCT packetinfo;

struct GetTipToProbeCompensationRT

struct BasicCommandRT packetinfo;
int ilnternalTipToProbeCompensationid;

Get/SetExternTriggerParamsCT/RT

Command structures for setting/getting the
external trigger parameters. See
'ExternTriggerParamsT' structure for parameter
description.

235

struct SetExternTriggerParamsCT

{

struct BasicCommandCT packetinfo;

struct ExternTriggerParamsT triggerParams;
}:
struct SetExternTriggerParamsRT

struct BasicCommandRT packetinfo;

}:
struct GetExternTriggerParamsCT
{
struct BasicCommandCT packetinfo;
};

struct GetExternTriggerParamsRT

struct BasicCommandRT packetlinfo;
struct ExternTriggerParamsT triggerParams;

}s

GetErrorEllipsoidCT/RT

Command structures to calculate an error
ellipsoid from a given point and its error statistic.
This is a convenience command for user-
interface purposes. Input parameters are 3
coordinate values, their standard deviations plus
the covariance matrix. Input is in current units,
current CS and with applied transformation /
orientation settings. Output parameters are 3 Std
Dev values (ellipsoid- axes), always related to
X,Y,Z (RH cartesian) and 3 Rotation angles that
describe the orientation of the error ellipsoid.

struct GetErrorEllipsoidCT

{
struct BasicCommandCT packetlinfo;
double dCoord1;
double dCoord2;
double dCoord3;
double dStdDevl;
double dStdDev2;
double dStdDev3;
double dCovaril2;
double dCovaril3;
double dCovar23;

};

struct GetErrorEllipsoidRT

{
struct BasicCommandRT packetinfo;
double dStdDevX;
double dStdDevY;
double dStdDevZ;
double dRotationAngleX;
double dRotationAngleY;
double dRotationAngleZ;

};

GetMeasurementCameralnfoCT/RT

Command structures to read T-CAM-specific
properties and feature data of the active camera.

236

The tracker must be equipped with a
Measurement camera.

Note: with emScon V2.3, variable names have
changed from iFirmWare... to iFirmware... This
will not have any influence to existing
applications at runtime. Upon compilation with
the new API- include- files, these names need to
be adjusted in the code of the application.

struct GetMeasurementCameralnfoCT

{
};

struct BasicCommandCT packetinfo;

struct GetMeasurementCameralnfoRT

struct BasicCommandRT packetinfo;

int iFirmwareMajorVersionNumber;
int iFirmwareMinorVersionNumber;
long I1SerialNumber;
ES_MeasurementCameraType cameraType;

unsigned short cName[32];

long ICompensationldNumber;

long 1ZoomSerialNumber;

long 1ZoomAdjustmentldNumber;
long 1Zoom2DCompensationldNumber;
long 1ZoomProjCenterCompldNumber;
double dMaxDistance;

double dMinDistance;

long INrOfPixelsX;

long INrOfPixelsY;

double dPixelSizeX;

double dPixelSizeY;

long IMaxDataRate;

GetMeasurementProbelnfoCT/RT

Command structures to read Probe-property
information and features of the active probe.
Note: with emScon V2.3, variable names have
changed from iFirmWare... to iFirmware... This
will not have any influence to existing
applications at runtime. Upon compilation with
the new API- include- files, these names need to
be adjusted in the code of the application.

237

struct GetMeasurementProbelnfoCT

{
struct BasicCommandCT packetinfo;

};

struct GetMeasurementProbelnfoRT

{
struct BasicCommandRT packetinfo;
int iFirmwareMajorVersionNumber;
int iFirmwareMinorVersionNumber;
long ISerialNumber;
ES_ProbeType probeType;
long ICompensationldNumber;
long IActiveField;
ES_ProbeConnectionType connectionType;
long INumberOfTipAdapters;
ES_ProbeButtonType probeButtonType;
long INumberOfFields;
ES_BOOL bHasWideAngleReceiver;
long INumberOfTipDataSets;
long INumberOfMelodies;
long INumberOfLoudnesSteps;

};

Get/SetLongSystemParamCT/RT

Command structures to set / get individual
system settings parameters (of type long). See
enum ES_SystemParameter.

struct SetlLongSystemParamCT

struct BasicCommandCT packetinfo;
enum ES_SystemParameter systemParam;
long IParameter;
}:
struct SetLongSystemParamRT
{
struct BasicCommandRT packetinfo;
struct GetLongSystemParamCT
{
struct BasicCommandCT packetinfo;
enum ES_SystemParameter systemParam;
}:
struct GetLongSystemParamRT
{
struct BasicCommandRT packetinfo;
enum ES_SystemParameter systemParam;
long IParameter;

GetMeasurementStatusinfoCT/RT

Command structures to get information about
status of all types of compensations and related
hardware.

Such information is useful in cases where the
Tracker Status is not ready and one wants to
figure out why. Without the information of this
command, investigation could be difficult
because there are numerous conditions why a

238

system is not ready to measure (Missing
compensations, Beam not attached, no accurate
Reflector). This especially applies to 6DoF modes.
A look to the bits of ‘IMeasurementStatusInfo’
immediately shows the reason.

The information data is delivered as a long value
representing a bit-mask. Use the enum

ES_ MeasurementStatusInfo values to decode /
mask the '1MeasurementStatusInfo' parameters
flags information.

Note the terminology with the 's":
GetMeasurementStatusInfo. This is because this
command relates to different types of
compensations and hardware (which are always
related)

struct GetMeasurementStatusIinfoCT

struct BasicCommandCT packetinfo;

};
struct GetMeasurementStatusIinfoRT
{
struct BasicCommandRT packetinfo;
enum ES_ResultStatus lastResultStatus;
long IMeasurementStatusinfo;
};

GetCurrentPrismPositionCT/RT

Command structures to get the 3D position of the
prism the laser is currently attached to. Delivers
the ‘same’ values as a stationary measurement
would deliver, however, less accurate than
stationary measurements. Do NOT use these
values as measurements where precise
measurements are required.

See command description
‘GetCurrentPrismPosition” for a typical
application of this command.

239

struct GetCurrentPrismPositionCT

{
struct BasicCommandCT packetinfo;

};

struct GetCurrentPrismPositionRT

{
struct BasicCommandRT packetinfo;
double dvall;
double dval2;
double dval3;

};

GetObjectTemperatureCT

Command structures for the
GetObjectTemperature command.
Details see description of ES_Command:
ES_C_GetObjectTemperature.

struct GetObjectTemperatureCT

{
struct BasicCommandCT packetinfo;
}:
struct GetObjectTemperatureRT
{
struct BasicCommandRT packetinfo;
double dObjectTemperature;
};

ClearCommandQueueCT/RT

Command structures for the
ClearCommandQueue command. Input
parameter clearQueueType: see enum
ES_ClearCommandQueueType. This is for
advanced programming issues. Remember that
the command- queuing mechanism must be
enabled explicitly by setting a value between
1..10. (See ES_SystemParameter
'ES_SP_TcpCommandQueueSize')

Further details see description of ES_Command:
ES C_ClearCommandQueue.

struct ClearCommandQueueCT

{
struct BasicCommandCT packetlinfo;
enum ES_ClearCommandQueueType clearQueueType;
};
struct ClearCommandQueueRT
{

struct BasicCommandRT packetinfo;

GetTriggerBoardInfoCT/RT

Command structures to get the
properties/features of the trigger board, such as
type (see enum ES_TriggerCardType), frequency

240

etc. This is for advanced programming issues.
Further details see description of ES_Command:
ES_C_GetTriggerBoardInfo.

See also "Tracker Trigger Interface' Appendix for
a more detailed description of trigger- issues.

struct GetTriggerBoardInfoCT

struct BasicCommandCT packetinfo;

struct GetTriggerBoardInfoRT

{

struct BasicCommandRT packetinfo;

enum ES_TriggerCardType triggerCardType;

long IFPGAVersion;

long IMaxTriggerFrequency;

long IErrorCode; // 0 ==> All OK
}:

GetOverviewCameralnfoCT/RT

Command structures to get the
properties/features of the overview camera, such
as name, type (see enum
ES_OverviewCameraType), chip size, focal
length etc. This is for advanced programming
issues.

Further details see description of ES_Command:
ES C_GetOverviewCameralnfo.

struct GetOverviewCameralnfoCT

{
struct BasicCommandCT packetinfo;

};

struct GetOverviewCameralnfoRT
struct BasicCommandRT packetinfo;
enum ES_OverviewCameraType cameraType;
unsigned short cCameraName[32]; // UNICODE
ES_BOOL blsColorCamera;
double dFocallLength;
double dHorizontalChipSize;
double dVerticalChipSize;
ES_BOOL bMirrorimageHz;
ES_BOOL bMirrorimageVt;

Get/SetDoubleSystemParamCT/RT

Command structures to set/get individual system
settings parameters (of type double).

Further details see description of ES_Command:
ES_C_Set/GetOverviewCameralnfo.

241

struct GetDoubleSystemParamCT

{
struct BasicCommandCT packetinfo;
enum ES_SystemParameter systemParam;
}:
struct GetDoubleSystemParamRT
{
struct BasicCommandRT packetinfo;
enum ES_SystemParameter systemParam;
double dParameter;
};
struct SetDoubleSystemParamCT
{
struct BasicCommandCT packetinfo;
enum ES_SystemParameter systemParam;
double dParameter;
}:

struct SetDoubleSystemParamRT
{

struct BasicCommandRT packetinfo;

}s

GetADMInfo2CT/RT

Command structures to read ADM-specific
properties and feature data. The tracker must be
equipped wit an ADM.

dMax/dMinDistance specifies the measuring
range in current length units. iMaxDataRate gives
the maximum measuring frequency the ADM is
capable to measure with.
dAccuracyADMDistance informs about the

specified accuracy of the measured distance.
struct GetADMInTo2CT

struct BasicCommandCT packetinfo;

struct GetADMInfo2RT

{
struct BasicCommandRT packetinfo;
enum ES_ADMType admType;
unsigned short cADMName[32];
long I1SerialNumber;
int iFirmwareMajorVersionNumber;
int iFirmwareMinorVersionNumber;
double dMaxDistance;
double dMinDistance;
int iMaxDataRate;
double dAccuracyADMDistance;
};

GetTrackerInfoCT/RT

Command structures to read tracker properties /
feature data of the currently connected tracker.
Includes information about the tracker- type,
available optional hardware (ADM,
OverviewCamera, Nivel), measuring range for
distances and angles, measuring rate, firmware
versions etc.

242

struct GetTrackerInfoCT

{
struct BasicCommandCT packetinfo;
};
struct GetTrackerInfoRT
{
struct BasicCommandRT packetinfo;
enum ES_LTSensorType trackerType;
unsigned short cTrackerName[32];
long ISerialNumber;
long ICompensationldNumber;
ES_BOOL bHasADM;
ES_BOOL bHasOverviewCamera;
ES_BOOL bHasNivel ;
double dNivelMountOffset;
double dMaxDistance;
double dMinDistance;
int iMaxDataRate;
int iNumberOfFaces;
double dHzAngleRange;
double dvtAngleRange;
enum ES_TrkAccuracyModel accuracyModel ;
int iMajLCPFirmwarevVersion;
int iMinLCPFirmwareVersion;
}:

GetNivelInfo2CT/RT

Command structures to read Inclination- Sensor

(Leica Nivel) -specific properties and feature
data. The tracker must have a 'Nivel' sensor

connected and enabled. Note that a new Nivel-
type 230 is now available (In the past there was
only Nivel20). This command also supports

newer Nivel- types (2005) and also returns name

and type information.
struct GetNivel Info2CT

struct BasicCommandCT packetinfo;

};
struct GetNivelInfo2RT
{
struct BasicCommandRT packetlinfo;
enum ES_NivelType nivelType;
unsigned short cNivelName[33];
long I1SerialNumber;
int iFirmwareMajorVersionNumber;
int iFirmwareMinorVersionNumber;
double dMeasurementRange;
double dMeasurementAccuracyOffset;
double dMeasurementAccuracyFactor;
}:

RestoreStartupConditionsCT/RT

Command structures for the
'RestoreStartupCondition' command. This
command has no parameters.

243

struct RestoreStartupConditionsCT

{
struct BasicCommandCT packetinfo;
}:
struct RestoreStartupConditionsRT
{

struct BasicCommandRT packetinfo;

GoAndMeasureCT/RT

Command structures for the 'GoAndMeasure'
command. The parameters specity the location
where to drive the laser beam and take the 3D
measurement.

Remember: GoAndMeasure is just a convenient
(i.e. speed- optimized) combination of the two
tasks 'GoPosition' and a stationary measurement.
Details see description of item
'ES_C_GoAndMeasure' of enum 'ES_Command'.

struct GoAndMeasureCT

{
struct BasicCommandCT packetlinfo;
double dvall;
double dval2;
double dval3;

};

struct GoAndMeasureRT

{
struct BasicCommandRT packetinfo;

};

3.5 C-Language TPI Programming
Instructions

The C-TPI is made- up of a pure collection of
enumeration types and data structures. The data
structures reflect the 'architecture’ of the data
packets (= byte arrays) sent and received over the
TCP/IP network, between the Application PC and
the Tracker Server. This (low- level) interface
serves as the basis for all higher level interfaces

(C++, C#, COM)

Also refer to C- Language TPI Reference section
and the ES_C_API_Def.h file.

No functions or procedures are defined.

Since C++ is an extension of C, a C++ compiler can
also be used for C programming,.

244

3.5.1 TCP/IP Connection

1. Establish a TCP/IP connection to the
tracker server. This is typically achieved by
invoking a Connect function of the TCP/IP
communication library or toolbox. This function
will take the IP address (or its related hostname)
of your Tracker Server.

2. Set the TCP/IP Port Number to 700 for
the Tracker Server.

3.5.2 Sending Commands

3. Call a SendData function from the
TCP/IP communication library or toolbox
(Function name may differ). This function
typically takes a pointer to a data packet and
probably the size of it (unless the packet is
wrapped into a structure that knows its size
implicitly, for example a Variant structure).

4. The architecture of the packets (TPI
protocol) is defined by the data structures in the
ES_C_API Def.h file.

5. For invoking for example a GoPosition
command, use the structure GolPositionCT and
assign appropriate initialization values. In
particular, assign an ES_Command and an
ES_C_GoPosition as header- data and provide 3
coordinate values as command parameters.
The compiler will not detect, if, for example, an
ES_DT_SingleMeasResult as type, or an
ES_C_SwitchLaser as command is assigned to a
GoPositionCT variable. Inappropriate initialization
values cause the command to fail.

GoPosition initialization sample:

245

GoPositionCT data; // declare packet variable
data.packetInfo.packetHeader_type = ES_DT_Command;
data.packetInfo.packetHeader.l1PacketSize = sizeof(data);
data.packetInfo.command = ES_C_GoPosition;

data.dvall = -1.879;

data.dval2 2.011;

data.dval3 0.551;

data.bUseADM = FALSE;

Note: emScon Version 1.5 was tolerant in not
initializing ‘packetHeader.|PacketSize' upon
sending commands. This is no longer the case for
emScon V2.0 and up. Correct Initialization of
'IPacketSize' is compulsory!

3.5.3 Initialization Macros

6. To avoid initialization errors, which
may happen through copy/paste errors and are
difficult to trace, it is recommended to use
initialization macros for correct assignment of
type, size and command values.

An INITStopMeasurement macro, for example,
requires two statements, the parameter
declaration and the parameter initialization
(macro call). The StopMeasurement has no
additional command parameters. If there are any,
these can be incorporated into the macro.

StopMeasurementCT cmdStop; // declaration
INITStopMeasurement(cmdStop) ; // initialization

3.5.4 Excurse: C++ Initialization

C++ offers a much more elegant way for
initialization — the 'constructor' approach, which
eases the initialization issues.

The good thing is that these initializations are
already done implicitly in the C++ interface.
Other than when programming with the C-
interface, these initializations do not need be
done (repeatedly) by the application
programmer.

See a C++ programmers reference for details.

7. After initialization of the data variable,
send it to the tracker server using the TCP/IP
SendData() function (or whatever this function is
called). Depending on the TCP/IP communication

246

library used, the data packet may need to be
packed into a Variant vrtData variable, followed
by a SendData (vrtData) call. Alternatively, a
Send() function takes the address and size of the
data packet variable, Send (&data, sizeof(data)).

3.5.5 Answers from Tracker Server

8. The SendData() function does not wait
for the Tracker Server (tracker) to complete the
requested action - SendData() will return
immediately. On completion of the requested
action, the tracker server sends an answer back to
the client. Depending on the command, it may
take a few seconds between sending the
command and receiving an answer. This requires
some type of notification or callback mechanism.
That is, as soon as data arrives from the Tracker
Server, some sort of event needs to trigger a
ReadData() procedure in the client application.
Depending on the TCP/IP communication, this
notification could be a Windows Message, an
Event or a Callback Function.

This type of communication is called
asynchronous.

3.5.6 Asynchronous Communication

9. From the programmer's point of view,
asynchronous communication is much more
difficult to handle than synchronous
communication. The programmer must ensure,
not to send a new command until the answer of
the previous one has returned.

3.5.7 DataArrived Notification

10. All TCP/IP communication
libraries/toolkits contain either a DataArrived()
notification or a similar function, which is called

247

by the framework each time data has arrived.
Depending on the toolkit:

e The function may directly return a Variant
type parameter that contains the data.

e The function may deliver the data within a
byte array.

e The function returns the size of the data
packet that is ready to be read. In this case,
the DataArrived() function subsequently
calls a ReadData() function immediately, in
order to get the data into a local byte array.

3.5.8 Data arrival 'Traffic Jams'

11. If a 'traffic jam' occurs on the incoming
TCP/IP line, i.e., if incoming data is being queued,
a ReadData() call will read all the currently
available data with no notification for each
individual packet (supposed buffer is big
enough). Many packets may be queued and only
one DataArrived notification might be issued. This
means that the byteArr buffer will contain more
than one packet. This may occur on high
frequency, continuous measurement streams. The
application has to make provisions to correctly
treat such cases. The [PacketSize value is most
convenient when parsing the byteArr buffer.

On the other hand, if the byteArr buffer is
completely filled with data, it is likely that the
last packet in the byteArr is incomplete. The
packet fragment needs to be saved and padded to
complete upon the subsequent read-call.

See chapter 'Queued and Scattered Data' for
details on how to properly treat such situations.

12. Assuming a received data block has
been read into a byte buffer named byteArr. In
order to interpret the data, a mask is required.
This requires knowledge of the type of data
packet (enum ES_DataType). A typical

248

PacketHeader interpreting code is as follows:

3.5.9 PacketHeader Masking

PacketHeaderT *pData = (PacketHeaderT*)byteArr;

13. Type and the size of the packet can be
accessed like:

pData->type;
pData->l1PacketSize;

The packet size is only for convenience.
Sizeof(data-type) alternatively could be used to
calculate the packet size.

This redundancy may be used for consistency
checks and is helpful when using programming
languages other than C that lack the sizeof()
operator).

From emScon Version 2.0 and up: 1PacketSize
must be initialized correctly also on sending
packets. This information is essential and no
longer ignored by the tracker server as this was
the case for previous emScon server versions.

3.5.10 Command Subtype Switch

14. Command type answers require a
switch statement to distinguish the command
subtype. Non-data returning commands can all
be treated the same and are handled in the
default switch statement. All other command
answers need to be masked with the appropriate
result structure. The code fragment below
demonstrates this with the GetUnits command,
and shows part of the handling of a single
measurement answer:

249

switch (pData->type)
{
case ES_DT_Command: // “command- type® answer arrived
{
BasicCommandRT *pData2 = (BasicCommandRT *)byteArr;

// if something went wrong, no need to continue
ifT (pbata2->status !'= ES_RS_AII0OK)

// TODO: evaluate and handle the error
return false;

by
switch (pData2->command)
case ES C_Initialize:
case ES_C_PointLaser:
case ES_C_FindReflector:
break;
case ES_C_GetUnits:
GetUnitsRT *pData3 = (GetUnitsRT *)byteArr;
// Diagnostics - check whether packet size
// as expected (in debug mode only)
ASSERT (pData3->packetinfo.
packetHeader . IPacketSize ==
sizeof(GetUnitsRT));
// now you can access Unit specific data.
pData3->unitsSettings. lenUnitType;
pData3->unitsSettings.tempUnitType;

break;

}

// case XXX:
// Todo: add other command type evaluations
// break;

default:
break;

}

break;

case ES DT_SingleMeasResult: // single-meas-result-
//type answer has arrived
SingleMeasResultT *pData4d =
(SingleMeasResultT *)byteArr;

ifT (pDatad4->packetinfo.status != ES RS_AIIOK)
return false;

break;

// Todo: add further "case" statements
// for remaining packet types

e Declaring variables within case statements,
which are suitable for masking data, require
curly brackets around a particular case
block. Otherwise the compiler will claim.

e If-then-else can be used instead of switch
statements. However, switches are more
efficient.

e Frequent items should be treated at the top
of a switch statement, for example multi-
measurement results (not covered above).

250

3.6 C Language TPI - Samples

Some older Samples distributed with former
emScon versions have been dropped because
they have 'expired’. For Example Samples 1 and
Sample 2 do no longer exist for the emScon V2.0
SDK. Nevertheless, the samples still provided
have not been re-named. That's the reason why
Sample 3 is the first one referenced here.
However, even if the names have not changed,
the samples might have improved since earlier
versions. Sample 4 (see C++ section) has been
completely revised for example).

Make sure to use the samples from the latest
SDK version (i.e. the ones that match your
current server- version)

3.6.1 Sample 3

Implements a 'lightweight' C-TPI client
application, with no graphical interface, GUI
overhead or MFC or ATL. This sample fits into a
single file with about 350 lines of code (including
comments and empty lines), and compiles into a
small executable file.

This sample implements only Initialize Tracker
and Get Direction commands. Since no Windows
Message Loop is available, the application needs
a multi-threaded approach and therefore
requires events and threads. For TCP/IP
communication, the Winsock API functions are
used.

Further details see 'Readme.txt' file in Sample 3
folder and code- comments in source files.

Console Application

To create this or a similar sample from the
scratch, the VC++ AppWizard or a text editor can

251

be used to create a 'Console Application' skeleton,
and to implement the C standard entry function:
int main(int argc, char* argv[]l)

{
}

Add all the source code, save the file (.c or .cpp
extension) and invoke the C compiler from the
command line.

Comments

These comments refer to the file
EmsyCApiConsoleClient.cpp.

The following include- files are required:

#include <stdio.h> // standard C input/output
#include <Winsock2.h> // win32 socket stuff
#include <process.h> // thread stuff

e The main() function first does a TCP/IP
connection by calling the function
TcplpConnect(), starts the Data Receiver
thread and enters an endless 'User Interface
loop'. The default IP address “192.168.0.1”
should be adjusted to the actual server
address. Alternatively, the IP address can
be passed as command- line argument
upon running the application.

e This loop looks for user input of one of the
two TPI commands 'i’ for Initialize Tracker
and 'g’ for Get Direction.

e If the user enters x, the loop is stopped, the
TCP/IP connection is closed and the
application terminates.

The TcplpConnect() function is
straightforward up to the call of connect().

o (Call WSAStartup. After connecting, call

WSAEventSelect(), which takes the
following parameters:

- A socket handle (that has been created
before) as a global variable.

- An event of type WSAEVENT as a global
variable. This variable must be initialized

252

with the return value of a
WSACreateEvent() call.

- A flags parameter. FD_READ is passed,
indicating an interest in data-arrival
events (a realistic application would have
to also trap FD_CLOSE events).

Calling this function will cause the TCP/IP
framework to signal the passed event,
whenever data has arrived at the socket.

The DataRecvThread() has an infinite loop with the
following statement:

WaitForSingleObject(g_hSocketEvent, INFINITE);

This is a blocking call and causes the loop to stop,
until the event is signaled to be read. The
blocking by the WaitForSingleObject is released
and the loop passes on.

Reset the event before available data is read into a
buffer.

Call a function ProcessData() that does the
interpretation of the buffer.

Queuing (Traffic Jams)

There are no provisions to handle 'traffic jams' on
the network. A real application needs to make
provisions to handle such situations with a
packet size transmitted in the header of each
packet. The Winsock function setsockopt() may be
used to 'tune' TCP/IP transmission rate by
increasing buffer sizes.

See Win32 documentation for more information
about Winsock API (especially the WSA...
function), threads and events.

See also 'Sample 9' (Receiving Data) in the C++
TPI section. Notice the comments in the source
code.

253

Remarks

This sample can easily be ported to non-Win32
platforms (Unix, Linux, and Mac).

Creating a 'console' application requires the use
of the WS AEventSelect() function with events and
threads.

Excurse: Windows Application

This chapter points out the options we had if we
chosen a Windows application instead of a
Console application.

For Windows applications, the WSAAsyncSelect()
function would be more appropriate. It issues
Window messages instead of events, which are
simpler to handle. No separate thread is required
(the window message loop takes this part).

See Win32 documentation on WSAAsyncSelect().

Winsock API

In Windows applications, the Winsock Active X
control (MSWinsck.ocx) could be used instead of
the Winsock2 API. This especially applies to VB /
VBA applications. The Winsock Active X control
provides a very high abstraction of socket-
commuiation and thus is quite easy to use.

For C++ applications, the use of a MFC library
permits a very convenient class wrapper around
the Winsock2 APIL.

Refer to the CAsyncSocket and CSocket classes in
C++ section for details.

Attention: The MFC 'CSocket' class may cause
problems when transferring very high rated
amounts of data (High frequency continuous
measurements). See Sample4/Step5 and Step6
(ReadmeStep5.txt / ReadmeStep6.txt) files for
details and how to avoid these problems.

254

4 C++ Interface

4.1 Class- based TPI Programming

4.1.1 Preconditions

Using the C++ interface requires sufficient
knowledge of object- oriented programming.

A programmer should at least know about class-
design, class- inheritance, virtual functions,
member function overloads, asynchronous
programming concepts and TCP/IP socket
programming.

This chapter describes wrapper-classes for data
structures and two main classes used for sending
commands and receiving answers.

The description of the classes in this chapter may
be slightly discrepant to the contents of the
ES_CPP_API_Def.h file in the SDK. In case of
discrepancies, the information in the
ES_CPP_API_Def.h file should be regarded as
correct.

Sample 4 (former Sample 4_2 in emScon 1.5)
comprises all these topics. This sample is most
suitable for introduction into emScon C++
programming,.

The C++ TPI does not provide any additional
functions for the Tracker Server. It is built upon
the C- interface and is made up of one include
tile, ES_CPP_API_Def.h with ES_C_API_Def.h as
its basis. The C++ interface implements two
classes CESAPICommand and CESAPIReceive,

apart from wrapper classes for each data
structure (of the C-TPI).

255

CESAPICommand handles sending of commands
from the client application to the Tracker server
and CESAPIReceive supports receiving and
parsing data sent by the Tracker Server back to
the client application.

The advantage of a class design is the availability
of constructors to perform (struct) initialization.
Using the TPI C++ interface is preferable to the C-
low-level (native) interface, if a C++ compiler is
available.

4.1.2 Platform Issues

Tracker Server client programming remains
platform independent since C++ compilers are
available for virtually every platform.

4.1.3 TCP/IP

This chapter does not touch TCP/IP basic issues.
See C- TPI section since this topic is independent
from the interface- type used (except COM
interface, where communication is embedded)

4.2 C++ Language TPI Reference

4.2.1 CESAPICommand class
SendPacket

virtual bool SendPacket(void* PacketStart, long PacketSize);

This is a pure virtual function that must be
implemented in the class derived from
CESAPICommand. Its implementation depends
on the selected TCP/IP socket library / APL

Command Functions

Only a few sample of the class' command
member functions are listed here since these can
be derived directly from the C- interface.

256

Example for a command taking no parameters
(Initialize the tracker):

bool Initialize();

Example for a command taking basic- type
parameters:

bool SetContinuousTimeModeParams(long ITimeSeparation,
long INumberOfPoints,
bool bUseRegion,
ES_RegionType regionType);

Example for a command taking a struct

parameter:

bool SetContinuousTimeModeParams(ContinuousTimeModeDataT
continuousTimeModeData) ;

The latter two functions are different overloads of
the same function.

Many of the command- functions exist in two
different overloads. Depending on context, it may
be more suitable for an application to use one or
the other overload.

A complete listing of all these functions is
available from the CESAPICommand class
definition in the file 'ES_CPP_API_Def.h' file.

Rather than redundantly listing all of these
member functions in this chapter, a general rule
is presented on how to derive the function names
from the related C-TPI structures.
(The text in [brackets] shows the rule applied to a
sample).

e Look up the command of interest in the

'‘enum ES_Command' (C- TPI Reference).
[ES_C_SetContinuousTimeModeParams]

e Remove the prefix 'ES_C_' from the
command tag- name. This will be the name
of the C++ function.
[SetContinuousTimeModeParams ()]

e For finding the input parameters, add the
Postfix 'CT' to the remaining command- tag

257

name.
[SetContinuousTimeModeParamsCT].

e Look up this CT structure in the C- TPI
reference for a description of all the
parameters.

4.2.2 CESAPIReceive class

ReceiveData
bool ReceiveData(void* packetStart, long packetSize);

ReceiveData is the parser- function for incoming
data. It has to be called after receiving a block of
data from the emScon server.

Packets passed to this method must be
COMPLETE (in terms of an RT struct as defined
in the C-API). Packet fragments are not processed
correctly. Hence the application (which calls
ReceiveData) must ensure to pass complete
packets. See chapter 'Queued and Scattered Data'
for details.

Data Arrival virtual Functions

The principle is as follows: Derive your own class
from CESAPIReceive and override those virtual
functions on whose data you are interested in.

Only a few sample of the class' virtual data
receiver member functions are listed here since
these can be derived directly from the C-
interface.

Example for a command that does not return any
data. If this function is called this means the
command has successfully executed (i.e. the
tracker has finished initializing):

virtual void OnlnitializeAnswer();

Example for a command returning data. (Which
is the case for all 'Get..." functions).

258

virtual void OnGetContinuousTimeModeParamsAnswer (
const ContinuousTimeModeDataT&
continuousTimeModeData) ;

A complete listing of all these functions is
available from the CESAPIReceive class
definition in the file 'ES_CPP_API_Def.h' file.

Rather than redundantly listing all of these
member functions in this chapter, a general rule

is presented on how to derive the function names
from the related C-TPI structures.

(The text in [brackets] shows the rule applied to a
sample).

Look up the command of interest in the 'enum

ES_Command' (C- TPI Reference).
[ES_C_GetContinuousTimeModeParams]

Replace the prefix 'ES_C_' by 'On' and pad the
name with 'Answer' in addition. This will be
the name of the virtual C++ answer function.
[OnGetContinuousTimeModeParamsAnswer]

For finding the passed parameters, ignore the
'On' prefix and replace the 'Answer' Postfix by
'RT". [GetContinuousTimeModeParamsRT].

Look up this RT structure in the C- TP1
reference for a description of all the
parameters.

General Data Arrival virtual Functions

virtual void OnCommandAnswer(const BasicCommandRT& cmd);
virtual void OnErrorAnswer(const ErrorResponseTé& error);

virtual void OnSystemStatusChange(
const SystemStatusChangeT& status);

e OnCommandAnswer() is called for every
command, in addition to the command-
related answer function. This function can
be convenient especially for non- parameter
taking commands.

e OnErrorAnswer () is called upon an error
condition. The status parameter indicates
the kind of error and (if known), the

259

command parameter indicates the
command that caused the error. Note that
not all errors are caused through
commands (e.g. Beam broken). In such
cases, the command parameter is
‘unknown'.

For status values, see enum
'ES_ResultStatus' and error numbers in the
Appendix of this manual

e OnSystemStatusChange() is called for every
status change event. For status values, see
enum 'ES_SystemStatusChange'

Note that virtual functions are only called if
defined int the derived receiver class.
Particular arrival data can be ignored if the
appropriate virtual function definition is
omitted.

Attention: Make sure the signature of the
virtual function in the derived class exactly
matches the signature in 'CESAPIReceive'.
However, the keyword 'virtual' is optional in
the derived class.

Mismatching signatures will result in not
calling the functions. The compiler cannot
detect such kind of errors.

It is therefore recommended to copy/paste the
virtual function header from CESAPIReceive
to the derived class.

4.3 C++ Language TPI

Programming Instructions

4.3.1 Sending Data

The class CESAPICommand contains a virtual
function SendPacket(), which must be overwritten.
This approach allows convenient 'Send...'

command functions.

260

Dealing with C data structures for sending
commands is no longer required, as they are
completely 'hidden'. Use the related member
functions of CESAPICommand instead.

4.3.2 Receiving Data

In order to select the data the application is
interested in, CESAPIReceive offers a method
ReceiveData, which is called on data arrival
events, as well as numerous virtual member
functions..

Dealing with C data structures for receiving data
is no longer required, as they are completely
'hidden'. Use the related (virtual) member
functions of CESAPIReceive instead.

4.3.3 Class Design Issues

All class member functions are defined 'inline’.
Neither a library nor a .cpp file is required. One
single include file makes up the C++ interface.
The C++ interface is thus fully transparent with
complete source code provided.

The C++ interface implements two classes named
CESAPICommand and CESAPIReceive, apart from
wrapper classes for each data structure (of the C-
TPI). A class design has the advantage of
constructors to delegate initialization issues. The
class CESAPICommand has a virtual function,
SendPacket(), which must be overwritten using
Send... command functions.

While the CESAPICommand class is used to send
data to the tracker server, the class
CESAPIReceive is used to receive data.

The principle is as follows: Derive your own class
from CESAPIReceive class and override those
virtual functions on whose data you are

261

interested in. Details see below in
'CESAPIReceive' chapter.

Insertion of the statement
#define ES_USE_EMSCON_NAMESPACE

before the inclusion of the ES_CPP_API_Def.h file,
defines a namespace EmScon for the TPI CPP
classes. This is only required in case of potential
name conflicts with other (third-party) libraries.

Refer to Sample 4 in the emScon SDK, for
namespace techniques. Refer also to C++
documentation.

4.3.4 Data Structure Wrapper Classes

About 80 % of the ES_CPP_API_Def.h file size is
used for definition of wrapper classes for data
structures, which are required for 'internal’
purposes. These classes are seldom used directly.
Each one of these classes contains only one single
member variable, a struct variable from C TPI
and one or more constructors. Class wrappers are
only available for command structures, 'CT', not
for return structures, 'RT, since the technique for
receiving data implements a completely different
approach through virtual functions.

Example: class CGoPosition

class CGoPosition

{
public:
inline CGoPosition(double dvall,
double dval2,
double dval3,
bool bUseADM)

DataPacket.packetlInfo.packetHeader. IPacketSize =
sizeof(GoPositionCT);

DataPacket.packetlInfo.packetHeader.type = ES_DT_Command;

DataPacket.packetinfo.command = ES_C_GoPosition;

DataPacket.dVvall = dvall;
DataPacket.dval2 = dval2;
DataPacket.dVval3 = dval3;

DataPacket.bUseADM = bUseADM;
};

GoPositionCT DataPacket;

}:
The struct member variable is declared at the

bottom and is of type GoPositionCT (definition of
C-TPI). To initialize the member variable, a so-

262

called constructor, taking the command
parameters as input, is provided.

Certain wrapper classes implement two
constructors:

e Taking the data as one single struct
parameter.

e Taking the data as individual parameters.

Example: class CSetUnits
class CSetUnits

i
public:
inline CSetUnits(SystemUnitsDataT unitsSettings)

DataPacket.packetlInfo.packetHeader. IPacketSize =
sizeof(SetUnitsCT);
DataPacket.packetlInfo.packetHeader.type = ES_DT_Command;
DataPacket.packetinfo.command = ES_C_SetUnits;
DataPacket.unitsSettings = unitsSettings;

}:
inline CSetUnits(ES_LengthUnit lenUnitType,
ES_AngleUnit angUnitType,
ES_TemperatureUnit tempUnitType,
ES_PressureuUnit pressUnitType,
ES_HumidityUnit humUnitType)
DataPacket.packetlInfo.packetHeader. IPacketSize =
sizeof(SetUnitsCT);
DataPacket.packetInfo.packetHeader.type = ES_DT_Command;
DataPacket.packetinfo.command = ES_C_SetUnits;
DataPacket.unitsSettings. lenUnitType = lenUnitType;
DataPacket.unitsSettings.angUnitType = angUnitType;
DataPacket._unitsSettings.tempUnitType = tempUnitType;
DataPacket.unitsSettings.pressUnitType = pressUnitType;
DataPacket.unitsSettings.humUnitType = humUnitType;

};

SetUnitsCT DataPacket;
};

4.3.5 CESAPICommand

A class for sending commands

The user of the C++ TPI may ignore all struct
wrapper classes. The only important class to be
used for programming is CESAPICommand,
which is defined at the end of the
ES_CPP_API_Def.h file.

Virtual override of SendPacket

In order to use the C++ TPI, a class from the
CESAPICommand class must be derived. This
derived class, a 'virtual' function, SendPacket(),
must be implemented. This function cannot be
implemented without knowledge of the TCP/IP

263

communication functions the application wants
to use. The implementation of SendPacket()
depends on the TCP/IP communication
functions/library/API. The SendPacket() function
expects a pointer to a data packet and the size of
that packet.

Class CMyEsCommand
Derived from CESAPICommand:

Class definition
class CMyESCommand : public CESAPICommand
{
public:
CMyESCommand() ;
virtual ~CMyESCommand();

// virtual function override
bool SendPacket(void *pPacketStart, long PacketSize);

// Todo: add members and methods used for
// TCP/1P communication

};

Class implementation

CMyESCommand: : CMyESCommand ()

// Todo: add initialization code (if any)
}

CMyESCommand: : ~CMyESCommand ()

// Todo: add cleanup code (if any)
3

// virtual function override
bool CMyESCommand: :SendPacket(void *pPacketStart,
long IPacketSize)

// Todo: implement this function according to your
// TCP/1P communication.

return true;

¥

Command Methods

The CESAPICommand class defines a 'Send'
method for each one of the TPI commands. These
methods are named according to the command
they cover.

Examples of such method names include:
o Initialize()

e GetCoordinateSystemType()

o SetSphereCenterModeParams()

264

The argument list depends on the number of
(send) parameters these commands take.

bool Initialize(); // example with no arguments

bool GoPosition(double dvall, // 3 position coordinate values
double dval2,
double dval3,
bool bUseADM = false); // default parameter

These functions completely hide command-struct
and struct initialization known from the C
interface. There is only one method for each one
of the command-structs described. A derived
class such as CMyEsCommand inherits all these
methods.

The names of the command functions are derived
from the members of the 'enum ES_ Command'
(C- TPI). Just omit the prefix 'ES_C_' to get the
command function related to a command "packet'.

Example: Given the ES_C_Command
'ES_C_SetBoxRegionParams', the related C++
command function will be called '
SetBoxRegionParams()".

The methods for sending commands are
asynchronous and can only be used for sending
commands.

4.3.6 CESAPIReceive

A class for receiving command answers

Virtual override of Answer Functions

In order to use the C++ TPI for receiving data, a
class from the CESAPIReceive class must be
derived. Then override those virtual functions on
whose data you are interested in.

Example: If your application implements a
‘GetDirection()’ call (a method of the
CESAPICommand class — see
‘ES_CPP_API_Def.h’), then you must override
the virtual function
‘OnGetDirectionAnswer(const double dHzAngle,
const double dVtAngle)” in your derived

265

CESAPIReceive class in order to receive the
results. In order to track errors, you always also
should override the virtual function
‘OnErrorAnswer(const ErrorResponseT& error)’.

Class CMyESAPIReceive

Code Sample: (only class and function
declaration is shown here, not the
implementation. Refer to samples for complete
code).

class CMyESAPIReceive: public CESAPIReceive
{

// override virtual functions of those
// answers you are interested in:

protected:
void OnErrorAnswer(const ErrorResponseT&);

void OnGetSearchParamsAnswer(const SearchParamsDataT&
searchParams);

See Sample 9 (EmsyCPPApiConsoleClient) for a
complete example on how to implement the two
classes derived from 'CESAPICommand' and
'CESAPIReceive’.

Further see the (revised) Sample 4 (= former
Sample 4.2 in emScon 1.5) on how to deal with
the CESAPICommand class (ESCppClient_Step3)
and the CESAPIReceive class
(ESCppClient_Step4).

4.3.7 Queued and Scattered Data

When the Tracker Server delivers more data
through the TCP/IP network than the client is
able to process, this may result in 'traffic jams'.
Although, the TCP/IP network buffers such data
(up to the configured buffer size), single data
packets will be queued. That is, there are no more
'gaps' between the data packets. When the client
is notified from the TCP/IP communication
framework that data has arrived, it has to react to
this notification by a Read call (depending on

266

your communication tools, this can be recv,
GetData, CSocket::Receive() etc.).

These read functions are not able to recognize
packet boundaries. Read functions read all data
that is currently available (In practice, the data
will be read in one read- cycle, only limited to
current buffer size).

Thus the buffer may now contain several
congested packets. The other special case is if
there is only a fraction of a packet .

Problem Solution

There are several possible approaches:

e Provide a sufficient read-buffer and read all
that is currently pending. The client
application parses the data block into
packets, using the header information and
size of each packet. With a fragmented last
packet, the next read- cycle is started and
the two fragments from the previous and
the current reading are assembled together.
This is probably the most efficient method,
since it minimizes the number of reading
interrupts. However, it is also the most
complex one in terms of data parsing.

e Read only the first 4 Bytes to determine the
size of the first pending packet. The rest of
the packet is estimated by reading
(packetSize — 4) bytes.

Alternate method: Peek' (instead of Read)
the packet-size, without removing data
from the socket. With known size, read as
many bytes as indicated by packetSize. See
code sample below.

This is the method we propagate for all our
samples.

Note: Earlier versions of the Samples /

267

Manual (up to emScon 2.3.472) propagated
to peek the full packet-header (8 bytes). In
the meantime, the very seldom situation
that a packet boundary ran across the
middle of a packet header was
encountered indeed! That is, the first part
(4 Bytes) of the header (of the next packet)
is at the tail of the current packet. Hence,
we failed to peek the header for 8 bytes.
Only 4 bytes were returned. To avoid such
(although rare!) problems, the function
was revised in terms it now only peeks for
the packet-size (the first 4 Bytes).

The sample code shown below demonstrates a
method to ensure complete packets (if data blocks
arrive scattered) and to avoid data congestion
(traffic jams). It is based on Winsock 2.0 API
functions.

Remember: There exist other approaches to
implement safe socket reading. Indeed, in terms
of performance, Peeking and then Reading may
not be the best solution. However, it's probably
the easiest one to implement. A most performing
algorithm would probably always read all data
that is currently pending and then parse the data
on the application side. However, such an
approach is much more complex.

268

LRESULT CMsgSink::OnMessageReceived(UINT uMsg, WPARAM wParam,
LPARAM IParam,
BOOL& bHandled)

// The read-buffer is kept static for performance reasons.
// In a real application better make it a member

// variable of CMsgSink. Buffer size depends on application.
// (data-amount and rate). Use something between 16 and 64K
//

static char szRecvBuf[RECV_BUFFER_SIZE]; // 1028*16

bool bOK = true;
long IReady = 0;
int nCounter = 0;
long IMissing = 0O;
long IBytesRead = 0;

long IPacketSize = 0;

long IBytesReadTotal = 0O;

int nSizeOfPacketSize = sizeof(long); // 4 Bytes!
PacketHeaderT *pHeader = NULL;

TRACE(_T(""CMsgSink: :OnMessageReceived(%lu, %lu)\n™),
wParam, IParam);

if (WSAGETSELECTEVENT(IParam) == FD_READ)
{
// Just peek packet size, do not remove data from queue
IReady = recv((SOCKET)wParam, szRecvBuf,
nSizeOfPacketSize, MSG_PEEK);

if (IReady == SOCKET_ERROR)
{

if (WSAGetLastError() == WSAEWOULDBLOCK)
Sleep(1); // busy - try later
else

Beep(1000, 100);
// not able to peek packet size
} /77 else
}y /7 if

if (IReady < nSizeOfPacketSize)
return true; // non-fatal only a peek, try next time!

pHeader = (PacketHeaderT*)szRecvBuf;

// only lIPacketSize is valid so far...
// ...do not reference pHeader->type!

IPacketSize = pHeader->lPacketSize;

bOK = bOK && IReady == nSizeOfPacketSize&&
IPacketSize >= nSizeOfPacketSize &&
IPacketSize < RECV_BUFFER_SIZE;

if (bOK)
{

do
{

nCounter++;

if (IBytesRead > 0)
IBytesReadTotal += IBytesRead;

IMissing = IPacketSize - IBytesReadTotal;

IBytesRead = recv((SOCKET)wParam,
(szRecvBuf + IBytesReadTotal),
IMissing, 0);

ifT (IBytesRead == SOCKET_ERROR)
{
if (WSAGetLastError() == WSAEWOULDBLOCK)

Sleep(1); // busy - try later
continue;

}

else
_Beep(1000, 100);

Yy /77 if
else if (IBytesRead == 0)

// See remark in receiver function of Sample9
Sleep(1);
continue;

} 7/ else if

it (nCounter > 64) // emergency exit

269

if (IBytesReadTotal <= 0)

TRACE(_T(*'not able to read data (recv)\n™));
return true; // nothing read, can leave safely
}y /7 if
else

bOK = false;
break;

>
Y /77 if
TRACE(_T("'Loop: BytesRead %ld, BytesReadTotal \
%ld, PacketSize %lId, Missing = %ld\n"),
IBytesRead, IBytesReadTotal+IBytesRead,

IPacketSize,
IMissing - IBytesRead);

} while (IBytesRead < IMissing);

if (IBytesRead > 0)
IBytesReadTotal += IBytesRead;
}y /7 if

bOK = bOK && IBytesRead == IMissing &&
IBytesReadTotal <= RECV_BUFFER_SIZE;

if (bOK)
{

// ProcessReceivedData() is assumed to take one single
// (complete) data packet. It contains a "switch”
// statement to evaluate the packet (we have seen this
// method several times in this manual / samples)

iT (IBytesReadTotal == IPacketSize)
ProcessReceivedData(szRecvBuf, IBytesReadTotal);
Y /7 if
}
else
bOK = false;
if (1bOK)

// make sure socket is cleaned up on data jam
// in order to recover ordinary data receiving

do
{

nCounter++;
IBytesRead = recv((SOCKET)wParam, szRecvBuf,
RECV_BUFFER_SIZE, 0);
TRACE(_T(*'Recover in loop\n™));
} while (IBytesRead > 0 && nCounter < 128);
TRACE(_T("Unexpected data - fatal error\n'));

Beep(250, 10); // data lost
} /77 else

return bOK; // true when message handled

} // OnMessageReceived()

This code ensures that only complete packets are
processed. However, the client may still not be
fast enough to process all the incoming data. The
TCP/IP framework will buffer data, up to a limit.
If such limits are reached, arbitrary data may
arrive. The above function has (limited) recovery
ability in case this should happen. Data may get

lost in such situations.

270

Cause of Data Loss
e The network is not fast enough.
e The client PC is not powerful enough.

e The application is not able to process data
fast enough.

e The application is not designed
appropriately.
The client application can still buffer
incoming data, for example, in a FIFO list
(taking the data packets as list elements).
This approach can be chosen if the
performance constraint is caused by
intensive data processing. The Winsock?2
API offers certain 'tuning' functions. These
allow, for example, to alter internal network
buffers. Increasing the receive- buffer with
setsockopt(), for example, may increase data
throughput significantly.

#define SOCKET_READ_BUFFER_SIZE (256 * 1024) // 256 KB buffer

int nBufSize = SOCKET_READ_BUFFER_SIZE;
int nVarSize = sizeof(nBufSize); // we know it"s 4 byte, but
//using sizeof is better style!

nRet = setsockopt(m_sock, SOL_SOCKET, SO_RCVBUF,
(char *)&nBufSize, nVarSize);
ASSERT(nRet != SOCKET_ERROR);

See documentation on setsockopt() for further
details.

4.3.8 Partial Settings Changes

Consider the command 'SetUnits'. This command
takes all selectable unit- types (Length, Angular,
Temperature, Pressure, Humidity) as parameters.
However, often one wants to change only one of
these and leave the others untouched.

The best method to do so is invoking a 'GetUnits'
first, then change only the one parameter of
interest and finally do a 'SetUnits'".

Here is a C++ sample (although the same
approach also applies to C and COM interface).

271

GetUnits(); // trigger a "GetUnitsCommand*®

// The current units are delivered in such that
// the following virtual function will be called:

void OnGetUnitsAnswer(unitsSettings)
SystemUnitsDataT newUnits = unitsSettings;
// change angle unit and leave all the rest untouched
newUnits.angUnitType = ES_AU_Degree;

// restore changed parameters
// (assumed g_cmdObj is a pointer to your ApiCommand obj)

g_cmdObj->SetUnits(newUnits);
}

Note: since the parameter of the
OnGetUnitsAnswer() is designed as 'const', it is
necessary to use a local struct newUnits'. It is not
possible to directly change 'unitsSettings'.

Another 'favorite' for this technique is the
command 'SetSystemSettings'. Often it is required
to change only one of the different flags of the
'SetSystemSettings' parameters.

However, this technique can be used for every
Set/Get command pair (if the command has more
than one parameter or a struct parameter).

4.3.9 Asynchronous Programming Issues

As already stated, all communication through the
C++ interface is asynchronous.

It is therefore not possible to 'queue’ commands
within one function call. In other words, consider
a Windows application with a graphical interface.
Assume a button named 'InitialSettings' with a
button- press handler as follows behind (Note
this is pseudo code since no parameters are
specified):

272

OnlnitialSettingsButtonPressed()

{
m_myApiCmd->SetUnits(...);
m_myApiCmd->SetEnvironmentParams(...);
m_myApiCmd->Initialize();
m_myApiCmd->GetReflectors();
m_myApiCmd->SetMeasurementMode(...);

}

This won't work at all because this a typical
synchronous approach (i.e. It is assumed a
command has finished when it returns). In an
asynchronous approach, each command returns
immediately. In the sample above, SetUnits() and
SetEnvironmentParams() may accidentally work
(because these commands do not take a long time
— but never rely on this!). But Initialize() — since
this command takes about 45 seconds to
terminate — also returns immediately. The server,
however, is not ready to take the next command
until initialization of tracker is finished. Hence
the command ' GetReflectors()' would fail with a
'Server busy' error.

Note: The emScon COM interface provides a
synchronous interface, which allows to queue
several commands in one and the same function.
However, even when using the synchronous
interface, some answers remain asynchronous by
nature. These are error events, system status
change events and 'multi- packet' command
answers, such as 'GetReflectors',
'GetCompensations' etc.

The correct approach is that the application
never issues a command before the previous one
has returned. Even a non- parameter returning
command always indicates its termination by
sending an 'acknowledgment'. With the C++
interface, either the general
'OnCommandAnswer()' can be used for that
(practically only suitable for commands that do
not return any results). In addition, every
command has its individual 'On..Answer()'
handler. See 'ES_CPP_API_Def.h' file,
CESAPIReceive class.

273

In particular, the next command may not be
issued before the 'On..Answer()' handler of the
previous command has arrived. There are several
possible approaches to achieve correct execution
of a series of commands :

e Directly call the next command in the
'On..Answer()' of the previous command.
This approach is demonstrated with the
'GetReflectors' / 'GetReflector()' sequence in
Step4 of Sample 4.

Remark: There is a helper function
InitReflectorBox() in
OnGetReflectorsAnswer(). The next
command ' GetReflector()' is called in this
'InitReflectorBox()' function. However,
'GetReflector()' could also be called inside
'OnGetReflectorsAnswer()' function
directly.

¢ Queue your commands in a list. Take the
first command from the list and send it to
the tracker server. At the same time, set an
Event (or another synchronization object,
such as Mutex or Semaphore)' that
prevents taking the next command from the
list. As soon as the answer of the pending
command arrives, reset the Event, which
will cause to process the next command
from the list.
In contrast to the first approach, where each
On..Answer() handler calls a different
subsequent command, this second
approach is more general in such that every
answer handler does the same: 'ResetEvent'.
Needless to say that this approach means a
multi threaded application.

e Queue your commands in a list. Use an
application-defined Windows message
handler that removes and processes the first
command of the list and sends it to the

274

tracker server. To start the 'command-
chain', do an explicit first call of this
message handler. In every 'On..Answer()'
handler, a 'PostMessage()' call will cause to
trigger the message handler in order to
process the next command. (Important to
use PostMessage, not SendMessage).

The advantage of this approach is that no
multi- threaded application is required
since the Windows message loop takes care
of synchronization. On the other hand, this
approach only works for windows
applications and not for console
applications or 'windowless server
applications' (Hint: you may use an
invisible window for message handling).

To be complete, the most simple approach
is also mentioned here, although this does
not really mean an 'automated queuing' of
commands: Let the synchronization to the
user! This means that the application
implements an individual Button for every
command, i.e. every button handler calls
only one command. The user himself must
make sure he does not press a button while
a pending command has not terminated.
The application can support the user in
such that it disables all buttons while a
command is in action. (Disable all buttons
when pressing any button, enable all again
when a 'On..Answer()' handler is called).

The 'asynchronous issues' of this chapter also
apply to the C- Interface and the emScon COM
interface — as far as using the asynchronous
interface (or those parts of the synchronous COM
interface that remain asynchronous by nature).

275

4.3.10 Working with multiple trackers

Under C/C++ context, there is nothing special to
say about addressing multiple trackers from
within one application.

Just 'duplicate’ the code from the first tracker to
set up a 2nd connection to a different
controller/tracker. For the C++ interface, this
means to create 2nd instances of the
'CESApiCommand' and 'CESApiReceive' -
derived classes.

Remarks: If instances of the same Command- (=
Sender) and Receiver- classes are being used for
both trackers, these classes must not contain
global or shared! In particular, make sure any
instance gets its own instance of a communication
socket (for example by passing the socket objects
through constructor variables to the
Sender/Receiver classes).

Note that the Command- and Receiver- classes
used in the provided SDK Samples (7, 9) do not
consequently follow these principles! Especially
socket objects are global or shared. You must
either modify these classes in order to make them
'multi- instantiable’, or use a 'copy/paste'
approach and setup different Send/Receiver
classes for the 2nd tracker.

The latter means duplicated code and should be
avoided - unless both trackers have to fulfill
completely different tasks that require a different
set of commands and event handlers.

The former (using multiple instances of one and
the same Sender/Receiver class for multiple
trackers) in addition may require introducing a
'cookie'- property to the Receiver class. This can
be just an integer (tracker# 1 or 2), which is
passed as a parameter to the constructor. Upon
receiving answers, this cookie can then be used to
identify whether the answer came from the first
or from the 2nd tracker. Otherwise there would

276

be no way to identify whether an even handler
was triggered from one or the other tracker
(consider that both trackers may perform the
same command at the same time!).

An alternative (and from object oriented point of
view much better) approach than using cookies is
to pass a reference of the sender object to the
Receiver class. That is, instead of (or in addition
to) passing a cookie, we directly pass the
MyAPICommand variable. This approach is
suitable if both trackers have to do the same
sequence of commands. Otherwise, we may need
the cookie nevertheless in addition to the
command object reference.

See also chapter 'Multi Tracker C# Applications'
in section 6; there is a (C#) code- sample
demonstrating the cookie- technique. This sample
also shows how to make Sender/Receiver classes
‘multi-instantiable’ - the shown approach there
(sockets, command objects, and cookies passed
through constructor variables) can easily be
equivalently applied to C++ applications.

Threading Issues: All calls to the C++ interface
are asynchronous by design; it is therefore NOT
required, nor recommended to use multi-
threading, i.e. running the two tracker instances
in two different threads (although - depending on
your application design - there might be reasons
to do so nevertheless). A (Windows) application
will be able to address both trackers in "parallel’
without dealing with the complexity of multiple
threads.

However, make sure to carefully synchronize
command calls. In particular, avoid mix-matching
command-answers from either tracker. Keep in
mind that the same command may be executed at
the same time for both trackers.

Note: A Console application - like Sample 9 -

277

needs a multithreaded approach for other reasons
(for receiving data while main thread [= user-
interface] is blocked). Multithreading is not
required because of multiple trackers. Indeed,
multithreading is required even for a single
tracker in case of a Console application.

Two (or even multiple) trackers can be set up in
the same sender- and receiver- thread
respectively. That is, regardless how many
trackers we have, we always need only two
threads - the main thread and a receiver thread.
Nevertheless, in this particular case it may
probably make sense to use separate receiver
threads for every CESApiReceive instance (i.e.
one receiver thread for each tracker).

On the other hand, one single thread (the main
thread) is sufficient to deal with several
CESApiCommand instances.

See also chapter 'Multi Tracker C# Applications'
in section 6.

Further see chapter 'Multi- tracker applications' in
the COM section. In contrast to applications using
the emScon C++ interface, multi-threading will be
compulsory for the COM interface if one wants to
take advantage of synchronous calls.

Remember: If we use a Windows application
(instead of a Console Application) in combination
with the emScon C++ interface, we do not need
any multi- threading at all, not even when
dealing with multiple trackers!

Instead we use the Windows messaging
mechanism (which runs under control of the
main thread) for data receiving issues; no receiver
threads are required. However, the 'cookie'
approach discussed above remains an issue.

278

4.4 C++ Language TPI Samples

4.4.1 Sample 4

This sample is designed as a 6 Step-by-Step
tutorial. It is a Windows application with a
graphical dialog user- interface and makes use of
the MFC framework.

Step1l:

Step 1 offers a simple dialog- based MFC
application. It has added some dialog controls
with message handlers and required dialog
member variables already defined.

However, all message handlers are empty (except
Beep).

The framework has been created using the
AppWizard and ClassWizard and then a bit
cleaned up manually in order to keep the code as
slim as possible (Eliminated icons, rc2 and pre-
compiled headers). In a real application, these
things could be left of course.

Note that the Step 1 application does not yet
depend on emScon at all.

Step2:
Step 2 adds TCP/IP communication to the
application. There are several ways to do this:

- use an appropriate Socket Class (that's what we
do in this application - we use CSocket of MFC,
which will be replaced in Step 6 by our own
socket class - CESSocket.

- use the Winsock2 C-library (as for example used
in the 'Sample9' of the emScon SDK)

- use the Winsck.ocx ActiveX control.
- use any other third-party socket library
We need to provide the following functions:

- connect to server

279

- disconnect from server

- write data to previously opened server
connection

In addition, we need a notification mechanism to
get informed that data has arrived and is ready to
be read.

Since this is a Windows application, we can use
the window message mechanism to achieve this.

(Note that in a non- windows application, we
would need to use events and threads to achieve
the same - see Sample9).

So far nothing depends from the emScon SDK -
we do not need any emScon- include file yet. All
is provided by the VC++ development Kit. But
nevertheless we will be able to connect to /
disconnect from server. But Step2 application will
not yet allow to send real emScon commands and
receive answers to/from server.

Step3:

Step 3 introduces the emScon command class
'CESAPICommand' to SEND 'understandable’
data to the server. More precisely, the class is
rather used to construct data blocks
‘understandable' to the emScon server. It's the
first time that the emScon SDK is involved. We
have to include the 'ES_CPP_API_Def.h' file (and
- indirectly through this file — some other include
files such as 'ES_C_API _Def.h' and 'Enum.h'.

As done with CSocket, we also must derive our
own class from 'CESAPICommand' because this
class contains a virtual function 'SendPacket'. It is
mandatory to provide our own implementation
of this class. The implementation depends on the
TCP/IP communication package we use.

Step3 application allows us to send commands,
but not yet to receive answers. So we will not be
able to check whether the command was

280

executed correctly because all commands are
ASYNCHRONOUS. That is, a command is sent,
then the application is idle while the server
executes the command. Then the server sends
back an acknowledge or error message. We have
no code yet to interpret these answers. We just
see how many bytes arrive. In Step4, we will add
logic to receive data.

Nevertheless, supposed the server and tracker is
running, we will at least see the tracker moving
when sending a 'Initialize’' tracker command.

If the correct reflector is set, GoBirdbath will also
work and we can even perform a measurement
(but we will not see the results yet)

Step4:

Step 4 introduces the emScon class
'CESAPIReceive' to RECEIVE "'understandable’
data from the server. More precisely, the class
provides virtual functions for every type of
answer. So the user can just override those virtual
functions he is interested in.

Step 4 also covers the topic of 'asynchronous'
communication. All C++ TPI communication is
asynchronous. That means a new command must
not be sent before the acknowledge or result of
the previous command has arrived. In addition,
the application should always be ready to catch
events (system status change, error events)

Correct reflector handling is also demonstrated
(relation between reflector ID and reflector name
and how to handle this in a dropdown combo box
(do not mix up the combo index with reflector
ID). Initializing the reflector combo happens in
several steps: GetReflectors, fill them into the box,
then GetReflector() to get the current one and
select it in the box.

281

Asynchronous techniques are heavily touched
with the reflectors handling (filling them into
combo box, select the current reflector...)

Further details see 'Readme.txt' file in Sample 4
folder and code- comments in source files.

Step5:

Step 5 adds control for selection of different
measurement modes, apart from some user-
interface refinements. In particular, the sample
shows how to handle continuous measurements.
It is possible to switch between 3D and 6DoF
stationary and continuous measurement modes.
Measurement time (stationary) and measurement
rate (continuous) are 'hardcoded’ (by calling
SetStationaryModeParams() and
SetContinuousTimeModeParams() at
initialization time.

Note that it only makes sense to select one of the
6DoF modes if the connected Tracker is equipped
with a T-Cam and a T-Probe is used as
measurement probe.

See important note at the bottom of
'ReadmeStepb5.txt' file in folder Step5. To avoid
the particular problem described there, another
Step 6 has been added to the Sample.

Step 6:

Unfortunately, the CSocket class of MFC has
turned out to contain a bug. On heavy data-
transfer (high frequency continuous
measurements, that is, if the time- separation
value is set to about 10ms or less), the socket can
get blocked and does not recover until restarting
the application. See remark at bottom of file
'ReadmeStepb5.txt' in the 'Step5' folder.

To avoid these problems, Step 6 introduces its
own socket class 'CESSocket'. Apart from this, the
sample is identical to Step5.

282

Further details see 'ReadmeStep6.txt' in the
'Step6' folder of Sample4.

4.4.2 Sample 9

This Sample, EmsyCPPApiConsoleClient, with a
CESAPIReceive class demonstrates Sending and
Receiving features of the C++ TPI (among other
features). Like Sample 3, Sample 9 is a simple
console application. However, in contrast to
Sample 3, it is based on the C++ TPI. In addition,
it has a more sophisticated data receiver function
in order to handle traffic jams and/or scattered
data.

The principle of using the C++ interface is the
same as used in Sample 4: Derive your own
classes from the C++ TPI classes
'CESApiCommand' and 'CESApiReceive' and
define virtual methods as needed.

Set the IP address to the actual Tracker server
address, before building the application.
Alternatively, the IP address can be passed as
command- line argument upon running the
application.

Further details see Readme.txt' file in Sample 9
folder and code- comments in source files.

4.4.3 Sample 12

This ReflectorCtl sample provides an ActiveX
component comprising the most common
reflector commands.

This control skips building up a lookup table for
ID/Name mapping, querying all the defined
reflectors from the system and providing the
appropriate user interface controls.

The Sample contains full source code (Visual C++)
and has a compiled component Reflector.ocx,

283

which allows use without a Visual C++ compiler.

Remarks

The Reflector.ocx control must be registered
before it can be used.

Only one instance of such a control can be
instantiated per Form/Dialog box.

The properties 'ServerAddress' and
'PortNumber' can be specified at
(Form/Dialog) design time. However, this only
makes sense if these parameters are constant.
The more common way is to set these
properties programmatically.

Call the method Initialize atter having set the
properties and not before the client application
has successfully connected to the same
address/port. This lets the client application,
instead of the Reflector.ocx, handle any
connecting problems.

The client application must ignore answers
from commands triggered by the Reflector.ocx
(Get Reflectors, GetReflector and SetReflector).

Do not implement an Error Event handler for
Reflector.ocx. The control has a built- in
handler. Visual Basic does not allow it— it
causes a compiler error. If correctly applied,
the component should never fire an error
event.

Here is a code sequence for a VB application.
Typically executed in Form Load:
Reflectorl.ServerAddress = "192.168.0.1"

Reflectorl.PortNumber = 700
Reflectorl.Initialize

e Itis assumed that the client application has
already successfully connected to the same
address/port before these calls.

284

Keyboard Interface Limitation

e This component is primarily designed for
mouse control and does not work properly
with a keyboard interface (E.g. use of arrow
keys in VB).

See VC/VBA/VB documentation for general
information on ActiveX controls, and how to
include them in applications.

Further details see 'Readme.txt' file in Sample 12
folder and code- comments in source files.

4.4.4 Sample 19
LiveVideo display C++ application.

See Chapter 8 / Special Functions / Live Image
display for details.

Attention:

New Live Image Format with emScon 3.0 !

Up to emScon 2.4, bitmap format frames were
used for the live video stream. With emScon 3.0,
this has changed to JPEG format. Sample 19 thus
has undergone an extension since emScon 2.4
SDK was released; it supports now both, Bitmap
and Jpeg formats. Support of bitmaps is only left
for backward compatibility to former emScon
servers.

For Jpeg image conversion and display, a public-
domain Third-Party library has been used
(CxImage by Davide Pizzolato). The emScon 3.0
SDK just contains a few parts of the CxImage
framework (some include- files and two libraries
for static linking - i.e. only those parts as far as
needed to build our sample). If interested, you
may get the complete CxImage source from the
internet.

285

5 COM - Interface

5.1 High-level TPI Programming

The emScon high-level TPI (COM interface) is
convenient for creating applications using Visual
Basic, MS Excel, MS Access and other VBA hosts.
It can also be used with C++ (although less
recommended) and C# / VB.NET.

5.1.1 Drawbacks

The emScon / tracker server (TS) high-level
interface, in contrast to the C++ TPI, may cause
some performance drawbacks. During high data
rates, some data may get lost under certain
conditions. In this case, using the C/C++ TPI
would be more suitable, since this would allow
for 'tuning' the TCP/IP communication. The TS
high-level interface does not provide such tuning
capabilities.

The emScon COM interface is limited to Win32
platforms.

5.1.2 Introduction

The emScon high-level interface is made up of a
COM component, as an ATL COM server. It
comes as a DLL named 'LTControl.dll', and it is
part of the emScon SDK.

COM components have to be registered on the
application computer. In order to register
LTControl.dll (Windows platforms only), execute
the following command from the command line:

286

Regsvr32.exe <Path>\LTControl.dll

See the 'Readme.txt' file that comes with the SDK
(lib folder) for a more detailed description.

Remark: The LTControl.dll component (as well
as LTVideo2.ocx) up to emScon Version 2.3.472
failed to register when performed by a user
without administrator privileges.

From emScon (SDK) version 2.3.477 and higher,
restricted users also may register these
components. However, be aware that only the
'owner' may then use them. Whenever possible, it
is recommended to have these components
registered by an administrator so that all users
may use them without any restrictions.

COM Components provide standardized
programming interfaces. LTControl provides
several custom interfaces and 'Connection Point
Interfaces' (of type IDispatch). This chapter does
not list all the methods and properties of these
interfaces in detail - rather view the so-called
type-library that comes with the control.

A type library describes COM object interfaces.
The type library LTControl.tlb is also implicitly
included in LTControl.dll.

All enumeration types and structures defined in
the C-TPI are also provided by the LTControl's
COM interface. These enums and structs will be
available for applications using LTControl,
supposed the programming language supports
user-defined data types.

To get an overview of the interfaces (including
properties, methods, events and UUIDs) exposed
by a COM object, a COM viewer may be used.

e Select the tools menu of Visual Studio.
e Select OLE/COM Object Viewer.

e Choose File > View Type Lib.

e Select LTControl.dll or LTControl.tlb.

287

The LTControl component is very convenient for
developing simple tracker applications using
Visual Basic, MS Excel, MS Access etc.

However, where performance and customized
TCP/IP communication are an issue, the C/C++
interface should be preferred.

It is generally not recommended to use the COM
TPI for writing C++ client applications, although
this is possible and also demonstrated in Sample
7. Especially receiving data is complicated in such
applications. The advantage of the COM TPI (in
contrast to the C++ TPI) is, however, that
synchronous calls can be used for many
commands and that all the socket communication
functionality is already implemented.

On the other hand, using the COM interface for
VisualBasic (VB.NET), VBA and even C# is very
convenient, including receiving data (through
Event handlers).

Refer to Samples 5 (VB) and Sample 8 (Excel) for
further information on how to apply the emScon
COM TPI for Visual Basic / VBA clients.

Sample 7 shows the usage from within C++,
although we do not recommend this. For C++
applications, we rather recommend to use the
C++ API directly.

Samples 14 and 15 show the usage of the COM
TPI from VB .NET and C# applications
respectively.

5.2 COM TPI Programming
Instructions

5.2.1 VisualBasic and VBA Applications

Due to several problems and bugs in Office 97, it
is recommended to use at least Office 2000 (Excel
2000/Word 2000) for VBA client programming.

288

The following steps apply to VisualBasic/VBA
(Excel, Access):

1.

Import LTControl to the project's references
list.

Select Project > References > LTControl.dll.
(You may need to browse if the DLL is not
shown in the list). Make sure the selected
one matches the one registered.

Declare an object of type LTConnect.
LTConnect is the only so called 'creatable’
object, hence the keyword New'.

Dim ObjConnect As New LTConnect

3.

Declare only one of the TPI controlling
interfaces, either synchronous or
asynchronous. It is not recommended using
both, synchronous and asynchronous
interfaces, from within one LTConnect
instance (although shown in some of the
provided Samples). When doing so in spite,
some answers will be duplicated and will
arrive on ‘both’ channels, making it difficult
to manage these by the application.

The keyword WithEvents is optional, and
should only be used in combination with
LTC_NM_Event selected as
NotificationMethod. It activates the related
connection point interface for event

handling.

Dim WithEvents ObjSync As LTCommandSync
Dim WithEvents ObjAsync As LTCommandAsync

4.

Connect to the tracker- server and initialize
the interface pointer(s), typically in an
application startup procedure.

In Visual Basic, this is often performed in the
Form_Load function.

289

Private Sub Form_Load()
On Error GoTo ErrorHandler

ObjConnect.ConnectEmbeddedSystem *'192.168.0.1", 700
ObjConnect.SelectNotificationMethod LTC_NM_Event, 0, O
Set ObjAsync = ObjConnect. ILTCommandAsync

Exit Sub

ErrorHandler:
End * Exit application when connect failed
MsgBox (Err.Description)

End Sub

5. Call ConnectEmbeddedSystem() with the IP
address of the Tracker Server and port 700.

6. Select the LTC_NM_Event method, if using
events (Other options may apply).

7. Initialize ObjAsync pointer with the related
property of the ObjConnect.
Use error handlers as shown, since interface
methods may throw exceptions.

8. Call Tracker functions:

Private Sub Initialize_Click(Q)
On Error GoTo ErrorHandler

ObjAsync.Initialize
Exit Sub
ErrorHandler:
MsgBox (Err.Description)
End Sub

Invoke only one command at a time when using
the asynchronous interface. No other command
should be sent until a pending one has
completed. This behavior makes up the
asynchronous approach.

With the synchronous interface, calls can be
queued within one function, although some
answer types (Errors, Status change events,
continuous measurements, reflectors...) remain
always asynchronous by nature, regardless
whether using the synchronous or asynchronous
interface.

9. Declare event handlers.
VB provides automatic code generation for
event handler bodies. (Note: an underscore
character (_) preceded by a blank character
means a line-break advice to the VB
interpreter. This is only supported by newer
VB versions. Alternatively, you can omit the

290

underscore and write the entire statement

onto one line).

Private Sub ObjAsync_ErrorEvent(_
ByVal command As LTCONTROLLib.ES_Command, _
ByVal status As LTCONTROLLib.ES_ResultStatus)

“For example indicates a beam broken event
IT not (status = ES_RS_Unknown) Then

MsgBox command & CStr(*" , ") & status
Else

MsgBox(*“‘unknown Error’)
Endif

End Sub

10. Retrieve data during continuous
measurement events.
Events for continuous measurements (and
Stilllmage results) do not provide the data
directly. The data must be retrieved
explicitly by using ILTConnect::GetDatal().
In C++ mask a data block with struct type
casts. For VB and VBA, ILTConnect provides
some helper functions, as shown below.

Private Sub LtSync_ContinuousPointDataReady(_

ByVval resultsTotal As Long, _
ByVval bytesTotal As Long)

On Error GoTo ErrorHandler

Dim numResults As Long

Dim measMode As Long

Dim temperture As Double

Dim pressure As Double

Dim humidity As Double

Dim data As Variant

LtConnect.GetData data

LtConnect.ContinuousDataGetHeaderInfo data, numResults, _
measMode, temperture, pressure, _
humidity

For index = 0 To numResults - 1

LtConnect.ContinuousPointGetAt data, index, status, _
timel, time2, dvall, dval2, dval3

“ Todo: Do something with the measurement data here
Next

Exit Sub
ErrorHandler:

MsgBox (Err._Description)
End Sub

ContinuousDataGetHeaderInfo()/
ContinuousPointGetAt() may affect the
performance. They have been primarily designed
for use with VBA.

For C++ applications, there exist more efficient
ways to extract continuous measurements
(masking data with structs).

291

5.2.2 C++ Applications

A complete C++ Console Application based on
the COM TPI is shown below. It shows the
import of the LTControl interface and how to
declare and initialize objects. The application uses
the synchronous interface (queuing several
commands). Events cannot easily be
implemented with a console application. The
conclusion is that the LTControl (emScon COM
interface) is not really of practical use for a
console application!

Console applications should rather be based on
the C/C++ interface.

See Sample 9 of the emScon SDK for a minimal
C++ console application, demonstrating
CESCommandApi as well the CESAPIReceive

class

#include <stdio.h>
#include <atlbase.h>

extern CComModule _Module;
#include <atlcom.h>

#import “LTControl.dll" no_namespace, named_guids,
inject_statement(“'#pragma pack(4)™)

int main(int argc, char* argv[])

{
Colnitialize(NULL);
ILTConnectPtr g_pLTConnect;
ILTCommandSyncPtr g_pLTCommandSync;
try
{ i
g_pLTConnect.Createlnstance(__uuidof(LTConnect));
g_pLTConnect->ConnectEmbeddedSystem(*'127.8.34.61", 700);
g_pLTCommandSync = g_pLTConnect->GetlLTCommandSync();
g_pLTCommandSync->SetCoordinateSystemType(ES_CS_LHRZ);
g_pLTCommandSync->Initialize();
g_pLTCommandSync->PointLaser(1.7, 2., 0.6);
g_pLTConnect->DisconnectEmbeddedSystem();
catch(_com_error &e)
printf("Exception:%s \n", (LPCTSTR)e.Description());
CoUninitialize();
return O;
3

Note the statement:

#import “LTControl.dll" no_namespace, named_guids,
inject_statement(“'#pragma pack(4)™)

This statement must, and not as shown, reside on
one single line. It is assumed that LTControl.dll
resides in the current directory, otherwise specify

292

the path, for example
.\ES_SDK\Iib\LTControl.dll.

Other than VB applications, COM TPI- based C++
applications need to call Createlnstance() using the

statement:
g_pLTCommandSync = g_pLTConnect->GetlLTCommandSync();

replaces the related VB call:

Set ObjSync = ObjConnect. ILTCommandSync

See Sample 7 for setting up an event sink for a
Windows application (Although this approach is
not recommended).

5.2.3 Notification Method

The following enumeration type defines the
different methods the SelectNotificationMethod can
take. Only one of these methods can be active at a
time. Therefore, SelectNotificationMethod should
be called only once with one of the following

values:
enum LTC_NotifyMethod
LTC_NM_None, // No notification (using nothing else
// but synchronous calls)
LTC_NM_Event, // notify through connection point

// interfaces (Events)
LTC_NM_WM_CopyData, // notify through copydata and pass

// data directly with message
LTC_NM_WM_Notify, // notify through WM message and

// pass only size through IParam

e LTC_NM_None
Neither events nor Windows messages are
sent. Hence neither a continuous
measurement nor trapping error events
(beam broken etc.) is possible. This option
therefore only makes sense for applications
that strictly use synchronous calls. The
targetHandle and cookie of the
SelectNotificationMethod method should be
Zero.

e LTC_NM_Event:
Events are used to notify the client on
asynchronous answers (sync and async

interface). The targetHandle and cookie of the
SelectNotificationMethod method should be

293

zero. This is the most commonly used
approach.

e LTC_NM_WM_CopyData
The client is notified by a WM_COPYDATA
message upon data arrival. The arrived data
block is transferred with the message.
See Win32 API documentation on
WM_COPYDATA for details.
The handle of the window that gets the
message must be passed through
targetHandle. If there are multiple LTControl
instances (more than one tracker), the call of
SelectNotificationMethod for each LTControl
instance must get a different cookie, in order
to identify incoming messages with the
respective tracker. The number of cookies is
not limited. They are passed to the client
through the pCopyDataStruct — dwData
member. The transferred data needs to be
interpreted by using the structures defined
in the C TPI as masks.

e LTC_NM_WM_Notify
The client is notified by a user-defined
message, WM_USER+XXX or a 'registered
message'. The CopyData method has one
cookie for each tracker. Other methods have
cookies only if there is more than one
tracker. The cookie is available as wParam at
the client application. The handle of the
window that gets the message must be
passed through targetHandle.
Only the size of the block is passed with the
message (through [Param). The GetData()
method of the LTConnect interface must be
called in order to retrieve the data.

The method SelectNotificationMethod is defined as
follows:

294

HRESULT SelectNotificationMethod(
/*[in]*/ LTC_NotifyMethod notifyMethod,
/*[in]*/ long targetHandle,
/*[in]*/ long cookie);

For implementing an event-sink in a Windows
application, using the LTC_NM_WM_CopyData or
LTC_NM_WM_Notify is recommended.

Using the 'LTC_NM_Event' option, although
possible (as Sample 7 shows), is more
complicated.

Sample 7 demonstrates all different approaches
(in commented code sections). Although most
complicated, the 'LTC_NM_Event' method is
enabled as the default.

5.2.4 Exceptions and Return Types

All methods/interfaces have HRESULT return
types, as per COM design. Applications are
usually not required to test these return codes,
since method failures are signaled by exceptions.
These exceptions come with error information
(mainly a text string describing the reason for
failure)

Exceptions must be 'caught'. Unhandled
exceptions lead to program aborts.

Exception Handling in Visual Basic / VBA

Each VB function calling COM interface methods
must provide the following statement before the
first call:

On Error GoTo ErrorHandler

At the bottom of the function, before the EndSub
statement, the following (minimal) code block

must be inserted:
Exit Sub

ErrorHandler:
MsgBox Err.Description

Err.Description is only a default minimal error
text (always in English). Of course any other error
message of your choice can be displayed.

295

To get the related error number rather than the
default- text, the error handler may look as

follows:
Exit Sub

ErrorHandler:
MsgBox (CStr(“Error occurred: ') & _
ObjConnect.LastResultStatus)

Use the LastResultStatus property! The term
Err.Number relates to a COM error number,
which is usually not of interest for the
application.

Alternatively, the number of the last error
(LastResultStatus property) can also be retrieved
with the TPI command 'GetSystemStatus'.

Additional or different error handling code can
be inserted after the ErrorHandler label.

Exception Handling in C++

In C++ applications, exception handling is
performed through try/catch statements. The
caught exception is of type _com_error.

See Win32API COM documentation for details of

ISupportError Interface.
try

pLTCommandSync->FindReflector(5.0);

catch(_com_error &e)

{
}

MessageBox("'Exception:%s", (LPCTSTR)e.Description());

e.Description() returns the appropriate default
string (same as Err.Description in VB). Try/catch-
statements may be nested, and are required when
queuing several synchronous commands within
one C++ function.

If the error number rather than the (default) text
is of interest, use the property
objConnect.LastResultStatus.

296

try
pLTCommandSync->FindReflector(5.0);

catch(_com_error &e)

{
MessageBox("Error Nr:%d", pLTConnect->LastResultStatus);

Alternatively, the number of the last error
(LastResultStatus property) can also be retrieved
with the TPI command 'GetSystemStatus'.

Exception Handling in C#

When using LTControl (COM TPI) with C#,
essentially the same concepts as with C++ applies.
C# uses a very similar try/catch approach.

Evaluating the Return status

The necessary exception handling precludes
evaluation of the return status of the COM
method call.

Certain constellations, such as S_FALSE return
values, may require a distinguished evaluation.

Success return values:

S_OK
S_FALSE

S_OK s returned for an ordinary success case.

Certain commands may return a TPI result-status
of type Out of Range OK. Example:
ES_RS_Parameter10utOfRangeOK. In this
situation, the COM method returns S_FALSE.
This means that the command (setting) has
succeeded, but that its value is out of specified
tolerance. In other words, this means just a
warning and thus, no exception will be thrown.
appropriate status information can be obtained in
two different ways:

e Evaluate the property
ILTConnect::LastResultStatus.

e Get the error Information (error string) with
GetErrorInfo().

297

Note that there exist only a few commands that
may return S_FALSE (For example environment
parameter setting commands).

BSTR bstrError;
1Errorinfo *plInfo;

HRESULT hr = GetErroriInfo(0, &plInfo);
if(pInfo && SUCCEEDED(plInfo->GetDescription(&bstrError)))
{

_bstr_t errorString(bstrError);

pInfo->Release();
}y /77 if

Failure return value:
E_FAIL

In case of any command failure, E_FAIL is
returned. This automatically leads to an exception
(thrown by the COM framework).

5.2.5 COM TPI supporting Programming
Languages

e Visual C++
- All Interfaces supported.

- User defined TypeLibrary (enum, structs)
supported.

- Event and message notification methods
supported.

e VisualBasic (VB 6)
- All interfaces supported.

- User defined TypeLibrary (enum, structs)
supported.

- Event and WM Message Notification
methods supported (Events to be preferred).

e VisualBasic for Applications (VBA) (Excel,
Word, and Access)

- All interfaces supported.

- User defined types of TypeLibrary (enum,
structs) supported with Office 2000, but not
fully supported with Office 97.

298

- Event notification methods supported (WM
Messages not supported).

e C#and VB .NET
- All interfaces supported.

- User defined types of TypeLibrary (enum,
structs) supported

- Event notification methods supported
e Scripting Languages (VBS, JavaScript)

Currently not supported. Support of these
languages requires 'Dual’ or IDispatch COM
interfaces.

Could be achieved by providing a COM
IDispatch wrapper around the LTControls
custom interfaces.

e Delphi
- All interfaces supported.

- User defined types of TypeLibrary (enum,
structs) supported

- Event notification methods supported

It is recommended to use at least Office 2000 or
XP for TPI VBA Programming. Office 97 (Excel
97, Word 97) lacks user-defined types (UDT) and
contains some bugs that make development of
TPI clients virtually impossible, as soon as events
are involved.

Interface methods using 'struct’ parameters,
which do not support UDT (Office 97 only),
cannot be used from within VBA. However,
functions are available based on basic data types,
as a work around.

Older versions of VBA may lack support of
enum-type symbols, so they need to be passed as
4 Byte (long) values. Therefore the numerical
representation of particular enum values must be

299

known. In C-language TP]I, these values are
explicitly enumerated.

See ES_C_API_Def.h in SDK, for enum
definitions. A type library viewer will also show
the numerical values.

Example

Enum definition:

enum ES_TrackerTemperatureRange

ES_TR_Low,
ES_TR_Medium,
ES_TR_High,
ES_TR_Automatic,
}:
ES_TR_Low =0, TR_Medium=1, ES_TR_High=2

and ES_TR_Automatic=3.

e Command in a VB application
ObjSync.SetTemperatureRange ES_TR_High

e Command in (old version) VBA
ObjSync.SetTemperatureRange 2

Only use the second approach if the first one is
not supported with your programming
environment!

5.2.6 Proper Interface Selection

Unlike the C and C++ TPI, the COM TPl is a DLL
library and not an include file. This DLL provides
an easy to use programming interface for the
Tracker Server. This makes it suitable for
programmers with minimal programming
expertise to design simple tracker applications.
The COM TPI also opens doors to programming
languages such as VisualBasic, Delphi, C#,
VB.NET, VBA (Office Macro Languages) etc.

The interface is made- up of a so-called COM
component. It is designed as an ATL DLL COM
server. The DLL is named 'LTControl.dll" and
comes as part of the emScon SDK. LTControl
provides built-in TCP/IP communication.

The LTControl COM-object DLL is based on the
tracker server C++ TPI, the Win32 Sockets 2.0 API

300

and VC++ ATL. The LTControl.dll is, in a sense, a
Tracker Server C++ Client. However it acts as
Server from applications (based on LTControl)
point of view.

The programmer is not required to deal with
TCP/IP communication libraries or system
programming interfaces.

The high-level TPI supports both synchronous
and asynchronous methods.

Note: Using the ‘synchronous’ interface may
provide some convenient properties. However,
there are also some disadvantages: Long- taking
actions cannot be interrupted (FindReflector,
OrientToGravity..), as this is possible with
asynchronous communication on using
‘StopMeasurement’ command. Synchronous
commands also imply potential timeouts.

The COM component is binary and thus also
lacks transparency. Other than with the C/C++
interface, no debugging down to the source level
is possible. For highly professional applications,
we rather recommend programming in C++ or
C#, hence using the C++ or C# interface directly
(which are asynchronous be design).

COM objects expose 'interfaces', described by a
Type-Library, which is implicitly included in the
DLL. A pure Type Library LTControl.tlb is also
available, although not really needed. This High-
level interface does not provide any additional
functions (in terms of Tracker Server controlling
functions). LTControl is strictly based on the C++-
TPI, with a high-level, convenient programming
interface.

COM interfaces work well together with Visual
Basic, Delphi and Office Macro programming
languages (VBA) on the Win32 platform, while
using the emScon C or C++ interface is difficult
for those types of languages.

301

COMvs. C/C++ Programming

Advantages

No include-file to deal
with on using COM TPL

No TCP/IP library or
function needs to be
provided. All these
functions are built-in.
Only the IP address of
the tracker server needs
to be provided.

The COM interface offers
both synchronous (to a
certain degree) and
asynchronous
communication support.

There are wide varieties
of notification methods
for arrival data when
using asynchronous
communication.

Supports various
programming languages.
Easy to use due to
support of 'IntelliSense'
for Microsoft Visual and
Office programming
tools.

Disadvantages

Comes as a DLL (binary).
Its source code is not
public. Lacks full
transparency and
complicates application
debugging.

Is limited to Win32
platforms.

Due to COM overhead,
the performance may be
affected.

Since TCP/IP
communication is built-
in, there are no 'tuning’'
possibilities.

The component needs to
be registered on the client
PC.

Interfaces and Notification Methods

See chapter 'COM Interface' for more information
on the interfaces provided.

5.2.7 Type- Library

In order to get detailed information about the
Interfaces (including data types, properties,

302

methods and events) exposed by a COM object, a
COM viewer may be used. Visual Studio offers
such a viewer: The OLE/COM Object Viewer can
be launched from the Tools menu of VC++.

File > View Type Lib > LTControl.dll or LTControl.tlb.

5.2.8 COM TPI Reference

The type library of a COM object can be seen as
Interface Reference.

Listing all the methods redundantly in this
manual would not make sense.

The type library enables a development
environment to provide 'IntelliSense' support.
That is, the development environment supports
the programmer in selecting methods and
parameters in an active manner.

The method names of the COM TPI partly differ
from those of the C++ interface (Although most of
them — especially the 'Set/Get' functions — are
named accordingly). This 'inconsistency' comes
from the high- level approach of certain methods.
However, by viewing the list of available
functions (type- library, Intellisense), it is quite
easy to find the proper methods and their
relatives to the C / C++ interface (where the
parameters are described).

Note that asynchronous methods never return
any data. Data is returned through events in
these cases. On the other hand, synchronous
methods always return the result data (if any) as
parameters.

Concerning input parameters (sent to the tracker
server), there is no difference between the
synchronous and asynchronous approach.

Note: The event [id(76), "SystemParameterData"]
of the interface _ILTCommandAsyncEvents
should no longer be used. For new applications,

303

use [id(80), "LongSystemParameterData"]
instead.

The former one is only kept to ensure
compatibility to existing applications.

Old and new event only differ by name (and
dispatch ID). The parameter list remains
unchanged. The reason for the name change is to
avoid a mess-up with the newly introduced event
"DoubleSystemParameterData".

5.2.9 Registering COM Objects

COM objects must be registered on the
application PC before they can be used. For
details refer to the 'Readme.txt' file that comes
with the SDK (Lib folder)

5.2.10 Synchronous versus
Asynchronous Interface

When designing a client application using the
LTControl COM component, either the
synchronous or asynchronous interface can be
used.

Ditferences between the synchronous and
asynchronous interface.

e The functions of the synchronous interface do
not return before the task is completed, while the
asynchronous functions do so (see C/C++-TPI).

¢ In general, programming with synchronous
functions is much easier. Handling Data-Arrival
Events or Notifications is not required (except in
some special cases).

e With the asynchronous interface and the events
notification (that is, calling
SelectNotificationMethod with LTC_NM_Event), an
Event- Sink must be implemented. In VB, this is
done by defining the WithEvents keyword, but in
C++ this is a bit more complicated. In addition,
the appropriate event handlers must be

304

implemented.

With any other notification mechanism, the event
sink is not required and the WithEvents keyword

must be removed. Implement Windows Message
handlers, not Event handlers, in this case.

e With the synchronous interface, some answers
remain asynchronous by their nature - continuous
measurement packets, Reflectors and error answers
(these may partly occur non-command related,
for example beam broken).

With synchronous commands, events or
notifications must still be caught - See former
paragraph. Any other notification mechanism
does not need an event sink, and the WithEvents
keyword must be removed. In this case, do not
implement Event handlers; appropriate
Windows Message handlers must be
implemented instead.

e Using both interfaces in the same LTConnect
instance — although possible — usually makes no
sense and partly leads to duplicate answers. Use
of both interfaces within one and the same
application is therefore not recommended.

5.2.11 Visual Basic Boolean variable
evaluation

e Do not test explicitly against the VB keyword
"True' when using Get<FunctionName>Ex
methods of the LTControl, for those commands
returning Boolean data within their result
structure. This is because the Boolean member in
these structures, if true, is one (1). However, the
VB keyword 'True' evaluates to (-1). Always test
the variable as a logical expression, or against
'Not False'.

305

Example
ObjSync.GetContinuousDistanceModeParamsEx dataout

IT (dataout.bUseRegion) Then "(tested as logical expression)
MsgBox '‘bUseRegion is True"
End If

or

IT Not (dataout.bUseRegion = False) Then
MsgBox *‘bUseRegion is True'"
End If

are both correct. However, the following would evaluate to a
wrong result:

IT (dataout.bUseRegion = True) Then
MsgBox *‘bUseRegion is True'" "No message even flag true!
End If

5.2.12 Reading Data Blocks with Visual
Basic

Arrival data reading with C++, as shown in
'Handling Data Arrival — Continuous
Measurements', can also be ported to VB. Events
for VB are used here, with unique events for
almost every type of arrival data (especially when
using the asynchronous interface). Most of these
pass their results through basic data type
parameters.

See chapter 'Handling Data Arrival — Continuous
Measurements'. See also Sample 13.

Message notification methods with VB are not
demonstrated here.

However, there are some exceptions where the
data must be retrieved explicitly upon an
incoming event. These types of events can be
identified by the DataReady term in their names.
The continuous measurement events are among
these.

The code below shows an implementation of the
ContinuousPointMeasDataReady() event handler. It
does not demonstrate the processing of the data
received. This handler does some diagnostics —
checks whether the size of read data complies
with the passed parameter. If OK, the size is
displayed, otherwise an error message is shown.

306

By calling the ObjConnectGetData() function, the
arrived data (that caused the event) is being read
into a local buffer. The application interprets and
processes the data. In order to get the
measurement values, loop through the array and
interpret the array elements with MeasValueT (not
shown here).

VB may not be the right choice to process (high
rate) continuous measurements, especially when
running the interpreter. The VB project must be

compiled first.

Private Sub ObjAsync_ContinuousPointMeasDataReady(_
ByVval resultsTotal As Long, _
ByVal bytesTotal As Long)
Dim data As Variant
Dim tp As VbVarType
Dim sz As Long

ObjConnect.GetData data
tp = VarType(data) " type; we expect a Byte arryay

IT (tp = vbArray + vbByte) Then * Byte Array
sz = UBound(data) + 1 " index is zero based!

IT (bytesTotal = sz) Then
MsgBox sz "display # of bytes received
Else
MsgBox CStr(*'Unexpected size:') & sz _
& CStr(", expected:') & bytesTotal
End If

End IFf
End Sub

It is not necessary to read data here (with
GetData). Answers may be filtered out and only
those data packets of interest can be read.

With TCP/IP data must be read at socket level
(see previous samples) otherwise no notification
will arrive again.

The principles shown here also apply to message
handlers, if one of the message notification
mechanisms is selected.

See chapter 'Answers from Tracker Server' on how
to mask/evaluate incoming data blocks.

5.2.13 VBA Macro-Language Support

Excel, Word, Access

The LTControl COM component can also be used
with VBA (Visual Basic for Applications), the

307

built-in Macro language of MS Excel, Word and
Access — with the exception that structs and enums
are not fully supported with VBA that comes
with Office 97. 'Ex' functions that take struct
parameters cannot be used. VBA that comes with
Office 2000 no longer has such limitations.

It is highly recommended to use Office 2000 or
higher for Tracker Server VBA Programming,.
Office 97 (Excel 97/Word 97) - apart from a
missing UDT - contain some bugs that make
development of Tracker Server clients virtually
impossible, as soon as events are involved. This
bug leads to a completely corrupted file upon file
saving, after an event has arrived.

For this reason, Excel samples delivered with the
TPI-SDK are in Excel 2000 format. They may run
with Excel 97 , but may be destroyed as soon as
any changes are saved. Always maintain a safe
(read-only) copy.

The following remarks only apply to Office 97
programming (Office 2000 VBA behaves as
ordinary VB).

User-defined Types, the Differences between
Visual Basic and VBA97

¢ Both allow defining user-defined structs
locally. However, those structs exported by
the LTControl (such as PacketHeaderT,
SingleMeasResultT) are only recognized from
within Visual Basic. VBA claims an error
Automation type not supported if declaring, for

example, a variable like:
Dim val As SingleMeasResultT // works with VB, but not VBA97

e Enums are not supported by VBA97. The
compiler does not know the keyword Enum.
User-defined enums cannot be defined
locally, although this works with ordinary
Visual Basic. It is also not possible to use
enum- type variables that are exported by the

308

LTControl. Declaration as follows are not
possible in VBA97:

Dim cmd as ES_Command // works with VB, but not VBA97

e When implementing an EventHandler that
has enum-type parameters in Visual Basic will
read as follows (only function header
shown):

Private Sub CommandSync_ErrorEvent(

ByVal command As LTEONTROLLib_ES_Command, _
ByVal status As LTCONTROLLib.ES_ResultStatus)

eWhen doing the same in VBA97 it will read
as follows:

Private Sub CommandSync_ErrorEvent(ByVvVal command As Long, _
ByVval status As Long)

Visual Basic keeps the enum type
information and recognizes the parameters
with their correct enum- types, while VBA just
passes them as long parameters.

However, the symbols of the enum values are
correctly recognized, although not checked
by the compiler for correct typing (which can
lead to errors, which are difficult to find).
This problem is not specific to VBA, it also
exists in VB. There are two different
situations where enums and their value-
symbols affect the interface:

Method takes enum type parameters, for
example, call SetMeasurementMode the same
way for both VB and VBA:

ObjSync.SetMeasurementMode ES_MM_ContinuousDistance

1. ES_MM_ContinuousDistance will be
correctly recognized as having the value 2'
(see enum definition).

2. Correct typing of values: VB as well as
the VBA interpreter will not recognize typing
errors in enum symbols here. However, both
VB and VBA provide 'IntelliSense’, providing
for a selection from a list rather than having
to type them in.

3. Ewvent handlers, as we have seen above,
pass enums as long values in VBA. The

309

incoming values can be tested against enum
symbols. In an event handler, the following
code might be typical (example ErrorEvent in
VBA):
Private Sub CommandSync_ErrorEvent(ByVvVal command As Long, _
Byval status As Long)
IT (command = ES_C_Initialize) Then

" do something
End If

IT (status = ES_RS_NoTPFound) Then
" do something

End If

End Sub

Use extreme caution while typing the symbols
with VBA 97. No 'IntelliSense' support is
available.

Summary

There is no problem with enums and VBA97. It is
just a potential error source due to missing type
checking.

Structs (unless locally defined) are not supported
in VBA97. LTControl always offers an alternative
to those functions returning struct parameters.

None of the event functions has struct parameters
(technical restriction), and have, therefore, no
restriction with VBA97.

5.2.14 Continuous measurements and VBA

Events of continuous measurements do not
directly pass the data.

See chapter 'Handling Data Arrival — Continuous
Measurements ' for details.

Handling continuous measurements within VBA
requires care. Events can be 'subscribed' with the
WithEvent keyword and pending data can be read
with GetData(), as shown in:

See chapter 'Reading Data Blocks with Visual
Basic' for details. Also see Sample 13 for a
working code example.

310

Masking Data

The unavailability of (LTControl) structures in
VBA prevents masking the data. With the byte-
layout of the data blocks, the appropriate bytes
can be extracted 'manually' and assigned to basic
data types.

This is not convenient and exceeds the typical
Excel programmer's expertise.

Even with VB, although structs are available,
masking data is not as easy as in C++. By
providing some helper functions, data blocks can
be copied to appropriate struct parameters
instead of using pointer type-casts:

ILTConnect: :ContinuousDataGetHeaderInfo()

ILTConnect: :ContinuousPointGetAt()

ILTConnect: :ContinuousPoint2GetAt()
ILTConnect: :Continuous6DDataGetAt()

This allows extracting information of interest
from data blocks of type ES_DT_MultiMeasResult,
ES_ DT MultiMeasResult2 and

ES DT Multi6 DMeasResult.

A VB (VBA) implementation of the
ContinuousPointMeasDataReady event handler that
demonstrates usage of these functions reads as
follows (note the many comments):

311

Private Sub LtSync_ContinuousPointMeasDataReady (_
ByVal resultsTotal As Long, ByVal bytesTotal As Long)

" a continuous point meas packet came in. Note that in

* case of continuous measurements (due to multiple points /
" variable size of packet) only # of results and packet size
* are passed in (which both are not really needed here)

" So we first must GET the data, then retrieve information

* out of the gotten block.

since we are doing function calls to a COM object
(LtConnect) that can throw exceptions, we need an error
handler. Note we would not require an error handler in the
other Event Handlers (LtSync_ReflectorsData,
LtSync_ReflectorPositionData) because (usually) no COM
functions are called there subsequently

On Error GoTo ErrorHandler
" 1. Get the data

Dim data As Variant

ObjConnect.GetData data

" 2. Get header info. Calling this function is optional.
" the only thing we need here is numResults. However,

" it"s the same as resultsTotal passed to the functions.
Dim numResults As Long

Dim measMode As Long

Dim temperture As Double

Dim pressure As Double

Dim humidity As Double

Dim mstatus As ES_MeasurementStatus

Dim timel As Long

Dim time2 As Long

Dim dvall As Double

Dim dval2 As Double

Dim dval3 As Double

ObjConnect.ContinuousDataGetHeaderInfo data, numResults, _
measMode, temperture, pressure, humidity, False

* since we have numResults twice from different paths, lets
" check them for compliance!

IT Not (numResults = resultsTotal) Then
MsgBox *‘Fatal Error - unexpected discrepancy"’
End If

® since we know how many results, we can loop over the index
" Note that index runs form O to numResults - 1

For Index = 0 To numResults - 1
" data and index are input parameters, rest output

ObjConnect.ContinuousPointGetAt data, Index, mstatus, _
timel, time2, dvall, dval2, dval3

" TODO: do something with each result here
Next

Exit Sub
ErrorHandler:

MsgBox Err.Description
End Sub

ContinuousPointGet At()/Continuous6 DDataGetAt()
may have an impact on performance. They have
been primarily designed for use with VB(A). For
C++ applications, more efficient ways to extract
continuous measurements exist.

VBA applications, depending on data processing,
may not have enough performance when using
continuous high data rates. Always run compiled

312

versions. In special cases the incoming results
need to be buffered.

Use of values instead of symbols, in Visual Basic,
avoids the problem of typing incorrect enum
symbols, which cause errors difficult to detect.

A complete .tlh file is automatically generated
when importing LTControl.tlb into a VC++ project.

5.2.15 Scripting Language Support

Pure scripting languages VBS (Visual Basic
Script), JavaScript etc. are currently not supported
by the LTControl COM component.

This would require IDispatch interfaces rather
than custom interfaces. Combinations of IDispatch
and custom interfaces (dual interfaces) have the
same disadvantage as IDispatch — lack of
performance.

5.2.16 Exception Handling for Non-
Microsoft Clients

The emScon LTControl COM interface also
supports Windows application development with

some Non- Microsoft Tools, such as Borland
Delphi.

For such applications, it may be necessary to set
the property
'LTConnect::ExceptionHandlingPolicy' to 1
(Before connecting to emScon server). Otherwise
exceptions may not be raised in the client
application.

Do not set this property for Microsoft clients (VB,
C++, C#, Excel..), that is, leave its default value 0.

For further information, see commented code in
Sample 20 (LtcDelphiClient), where this property
is set to 1.

Example (Delphi):

LTConnect.Set_ExceptionHandlingPolicy(l);

313

5.2.17 Multi- Tracker Applications

For multi tracker applications, create a separate
instance of 'LTConnect' for each tracker/
controller.

For single-threaded applications, the usage of the
asynchronous interface is compulsory in order to
allow 'parallel' control of multiple trackers.

If using the synchronous interface, the
application will not be able to do parallel calls to
multiple trackers! That means the application
waits for pending answers from any tracker
before another command (to the same or another
tracker) can be issued.

As an example, consider a 2-tracker application
using the synchronous interface that wants to
initialize both trackers upon startup. With a
single- threaded approach, initialization can only
be performed for one tracker after another.
Especially for long-time taking commands like
'Initialize’, it would of course be convenient to
execute this command in parallel for both
trackers. In order to do so, the application must
provide a separate thread for every instance of
the LTControl/LTConnect.

Note that LTControl is designed to run in so-
called 'Apartment Threaded' context. For details
about this, refer to Microsoft documentation.

For our purpose, there is no need to go too far
into details; we just provide some code-fragments
in order to illustrate how multithreaded
applications (using the LTControl) have to be set-
up (for different programming languages).

Using COM Control for Multi- Tracker Support in C++

Take Sample 7 (C++ application using the emScon
COM- interface) as a basis. Consider we'd like to
extend this application in order to control a 2nd
tracker in parallel.

Any C++ application using COM needs to make a

314

COM initialization call prior to use any COM
object. This usually happens in InitInstance(). So
does Sample 7. See 'Colnitialize(NULL)' in
CCPPClientApp::InitInstance() (As it does
CoUninitialize() upon exit).

It is important to notice that this COM
initialization will only be effective for the main-
thread; it will not apply to any child-thread!

In order to take full advantage of the
synchronous interface, we must instantiate a 2nd
instance of LTControl in a 2nd thread. This will
only succeed after having called
'Colnitialize(NULL)' within this new thread!
Note that - due to thread protection reasons - it is
not possible to instantiate a 2nd LTConnect/
SyncInterface in the main thread and then call
methods from the worker function of a child-
thread; the instantiation itself must occur in the
2nd threads worker function.

Typically, for an application like Sample 7, the
following steps will be required to add support
for a 2nd tracker:

In the class 'CCPPClientDlg' (header file), add a
declaration for the (secondary) thread worker
function (must be a static member):

static UINT SecondTrackerThread(LPVOID pParam);

Next, implement the worker function in related
.cpp file:

315

UINT CCPPClientDIlg::SecondTrackerThread(void *pParam)

{

// Do not declare/instantiate these in main thread.
// These must be local to the current thread!

//

ILTConnectPtr pLTConnect2;
ILTCommandSyncPtr pLTCommandSync2;
CLtcCppEventSink *pEventSink2 = NULL;

Colnitialize(NULL); // IMPORTANT - call this for every thread

// where ILTConnectPtr is instantiated!

CCPPClientDlg *dlg = (CCPPClientDIg*)pParam;

TRACE(_T("Thread for 2nd tracker started™));

// 1. Initialization part (instantiation and connection)

try

pLTConnect2.Createlnstance(__uuidof(LTConnect));

pLTConnect2->SelectNotificationMethod(LTC_NM_Event, 0, 0);

// attach Sync object
pLTCommandSync2 = pLTConnect2->GetlILTCommandSync();

it (pLTCommandSync2)
{

}

// The following (commented) block sets up the event-sink
// for tracker 2. However, we first would have to

// implement class CLtcCppEventSink2 (note that

// event sink CLtcCppEventSink from Sample 7 is not
// suitable to use with tracker 2 in this sample).

// You may of course design a common event sink that
// can be shared for both trackers (i.e. both trackers
// may have an instance of the same event sink class)
// Be careful with thread safety issues when accessing
// main- thread context (GUI!) from secondary thread
// from within a shared event sink!

/***

// Comments see related code in main thread of Sample 7
pEventSink2 = new CLtcCppEventSink2();
LPUNKNOWN pUnkSink = pEventSink2->GetlDispatch(FALSE);

DWORD dwCookie = O;

VERIFY (AfxConnectionAdvise(pLTCommandSync2,
DIID__ILTCommandSyncEvents,
pUnkSink, FALSE, &dwCookie));

pEventSink2->SetConnectPtr(pLTConnect?2);

Fxxk [

// if

// hardcoded arbitrary address due sample code.

// Adjust to your controllers address, use variable
// and pass for example from user- interface

//

pLTConnect2->ConnectEmbeddedSystem(*'10.62.35.53", 700);

catch(_com_error &e)

{
TRACE(_T(""Exception:%s \n'"), (LPCTSTR)e.Description());

ES ResultStatus rs = ES_RS_Unknown;
if (pLTConnect2)
rs = pLTConnect2->GetLastResultStatus();

CString s;
s.Format(_T("%s [Status %d]1™),
(LPCTSTR)e.Description(), rs);
AfxMessageBox(s);
}
else
AfxMessageBox(

_T("LTControl not loaded - Missing or not registered?'));

// 2. Worker part ("endless® loop)
for (3)
{

316

// Just sample code - of course it does not make sense to
// continuously call change Face, but we just want to

// demonstrate that tracker 1 be controlled independently
// from tracker 2, even while tracker2 is continuously busy

// A real application would provide a parser here (still
// within an endless loop) for user-interface commands
// dedicated to tracker 2.

// Note that as soon as we would leave this function, the
// thread dies and connection to 2nd tracker gets lost!
// A real application needs a correct thread termination
// mechanism and should do cleanup tasks for the

// instantiated interfaces and objects

TRACE(_T(**ChangeFace\n'));

pLTCommandSync2->ChangeFace();
} 7/ for

return (0); // never be reached in this sample! - in a real
// application, the for() loop would have a thread
// control flag that would cause to exit the loop
// if flag status changes
} 7/ SecondTrackerThread()

Finally, we must start the thread. This is done
most likely at the end of the main dialogs
OnlnitDialog() member function:

QANDLE hSecondTrackerThreadHandle = 0;

hSecondTrackerThreadHandle =
(HANDLE)AfxBeginThread(SecondTrackerThread, this);

it (hSecondTrackerThreadHandle == 0)

TRACE (_T("Failed to start thread for 2nd tracker\n'));
return FALSE;

Note that the shown code- fragments only
contain essential stuff. A real application would
probably do extra error diagnostic and of course
more proper thread termination and cleanup
tasks.

Important: The shown code fragments do not yet
include implementation of an event sink to
receive data from the 2nd tracker (see commented
block in the code above!) The existing event sink
for tracker 1 cannot be shared for use with tracker
2! We either need a separate event sink for tracker
2, or we would have to make some adjustments
to the provided Sample 7 code in order to share it
for a 2nd tracker.

In particular, a common event sink must make
sure there is no direct access to main-thread
context (GUI!) from within its event handlers.

317

Otherwise this would lead to access violations if
these event handlers were being triggered by the
2nd thread.

As far as we just do endless calls of synchronous
functions (i.e. 'ChangeFace' in our sample),
receiving data trough events may not be an issue
for the 2nd thread. (But even when only using
synchronous calls, an event sink at least for
unsolicited errors and events - such as 'beam
break' - should be provided anyway!)

The simplest approach was to duplicate the class
'CLtcCppEventSink' (Sample 7, files
LtcCPPEventSink.h /cpp) for a new class
'CLtcCppEventSink2' (especially if 2nd tracker
supports a different set of commands being called
and therefore applies to a different set of event
handlers).

Using the same event sink class for both trackers
(i.e. two instances of the one and only class
'CLtcCppEventSink’) is possible, but again, be
careful concerning thread protection and shared
data issues etc. There are many potential pitfalls
to this respect!

Remark: Due to adding 2nd tracker support to an
existing single tracker sample 'after the fact', we
have resulted into a 'code- asymmetry'.

A cleaner design could be achieved by using 3
threads: The main thread for user- interface
issues only and two (symmetrically- designed)
child- threads, one for each of the two trackers.
This model easily extends to any number of
trackers.

Summary: For making synchronous calls to two
trackers in parallel from within a C++
application, two instances of LTControl need to
run in their own threads. It is important to call
Colnitialize() for both threads! Both threads need
their own independent instances of data-

318

receiving event-sinks.

Multi-threading can be avoided; it is neither
required for issuing commands to two (or more)
trackers in parallel when using the asynchronous
interface, nor for issuing commands sequentially
by using the synchronous interface.

Remember: Despite to its name, the
'synchronous' interface of the 'LTControl' also
comprises some asynchronous aspects. This
applies to Continuous Measurements, List-type
data (e.g. Reflectors, Compensations), and
unsolicited events.

As if using the asynchronous interface, it's up to
the application to synchronize these calls. Hence
make sure that no command is being issued
unless the answer of any pending (asynchronous
behaving) command has arrived.

Using mixed synchronous and asynchronous
communication in combination with
multithreading for multiple tracker support may
result into quite complex code!

Using COM control for Multi- tracker support in Visual
Basic / VBA

Although principally possible, we do not
recommend creating multi- threaded Visual Basic
(V5 or V6) or VBA applications.

In order to get access to threading functionality
within a VB application, lots of functions need to
be imported from the Win API since they are not
natively available within VB.

Such declarations (or better call it 'code- hacks?)
would then typically look like as follows:

319

Declare Function CreateThread Lib "kernel32" (Byval _
IpSecurityAttributes As Long, ByVal dwStackSize As Long, _
ByVal IpStartAddress As Long, ByVal IpParameter As Long, _
ByVal dwCreationFlags As Long, IpThreadld As Long) _

As Long

Declare Function Colnitialize Lib "ole32.dIl" _
(dwColnit As Long) As Long

No multi-threading means no parallel
synchronous calls to multiple trackers!
However, you may nevertheless instantiate two
(or more) instances of LTControl for two different
trackers in your single-threaded VB application.
If using the synchronous interface, there is just a
restriction that you can issue commands only
sequentially to either tracker (for example
initialize one tracker after another - not in
parallel).

If using the asynchronous interface, even parallel
command execution for both trackers is possible
without multi- threading. The price to pay is just
that all commands need to be synchronized by
the application.

Instantiating second instances of COM objects is
quite simple within VB: Just duplicate all
involved variables and calls. Here are some code-
fragments (using the asynchronous interface). See
further comments within code- block below:

320

"variables for First tracker

Dim ObjConnect As New LTConnect

Dim WithEvents ObjAsync As LTCommandAsync
"2nd set of variables for 2nd tracker

Dim ObjConnect2 As New LTConnect
Dim WithEvents ObjAsync2 As LTCommandAsync

“connect to both trackers/servers
ObjConnect.ConnectEmbeddedSystem ""192.168.0.1" 700
ObjConnect2.ConnectEmbeddedSystem "10.62.35.53", 700

ObjConnect.SelectNotificationMethod LTC_NM_Event, 0, O
ObjConnect2.SelectNotificationMethod LTC_NM_Event, 0, O

Set ObjAsync = ObjConnect. ILTCommandAsync
Set ObjAsync2 = ObjConnect2. ILTCommandAsync

"Trigger a stationary measurement for both trackers (parallell)
ObjAsync.MeasureStationaryPoint
ObjAsync2._MeasureStationaryPoint

"Independent event handlers are required for both trackers.
“Implementation of (function bodies of) these is supported

by the VB IDE. Do not manually create these! Note that not
"all parameters are listed here (due just sample code fragment)

Private Sub ObjAsync_StationaryPointMeasData(_
Byval vall As Double,
Byval val2 As Double, ...)
MsgBox vall "just display one param
End Sub

Private Sub ObjAsync2_StationaryPointMeasData(_
Byval vall As Double,
Byval val2 As Double, ...)
MsgBox vall "just display one param
End Sub

If trying to create a multi-threaded VB
application nevertheless, the same rules apply as
described above for C++ applications: The second
thread needs to call 'Colnitialize()' (for the main-
thread, this call for VB applications happens
implicitly when referencing COM controls). The
COM objects need to be instantiated within the
2nd thread, and event handlers need to be
defined independently for both threads.

Using COM control for Multi- tracker support in
VB.NET and C#

Addressing COM controls from within VB.NET
and C# is simple and does not much differ from
the approach used for VB 6.

The same rules as for VB 6 applications apply
here: Multi-threading is not required unless one
wants to use synchronous calls to different

321

trackers in parallel. For all other cases, single
threaded applications are sufficient.

Here are some code- fragments showing how to
instantiate LTControl within VB.NET and C#
respectively. Note that LTControlLib must be
added as reference to the VB.NET or C# project in
order to get access to it.

Only declarations are shown, and for one tracker
only (asynchronous interface); just duplicate
variables for a 2nd tracker.

The IDE then provides available methods and
properties ('Intellisense’) as well as
implementation of event handlers even more
sophisticated than with VB 6.

"VB.NET

Imports LTCONTROLLib

Public _LTConnectl As New LTConnect
Public WithEvents _ObjAsyncl As LTCommandAsync

_LTConnectl.ConnectEmbeddedSystem(**10.62.34.30", 700)

_LTConnectl._SelectNotificationMethod(_
LTCONTROLLib.LTC_NotifyMethod.LTC_NM_Event, 0, 0)

_ObjAsyncl = _LTConnectl.ILTCommandAsync

"C#

using LTCONTROLLib;

LTConnect ltc;
LTCommandAsync async;

Itc = new LTConnect();
Itc.ConnectEmbeddedSystem(*'10.62.34.30", 700);
this.async = (LTCommandAsync)ltc. ILTCommandAsync;

Itc.SelectNotificationMethod(LTC_NotifyMethod.LTC_NM_Event,0,0);

Other than VB 6 applications, VB.NET and C#
natively support multi-threading.

For multithreaded VB.NET and C# applications -
which usually only make sense when using
synchronous calls for two or more trackers in

322

parallel - the following important requirement applies:
Any secondary thread must call

thread.ApartmentState =
ApartmentState.STA

This has essentially the same effect as calling
Colnitialize for C++/VB threads; STA stand for
'Single Threaded Apartment'.

All the rest is essentially the same as already
discussed for multithreaded C++ applications
above. There is a worker function for the
secondary thread; Instantiation of LTControl
objects for the 2nd thread needs to occur within
this function. Hence the code samples below for
VB.NET and C# should not leave open any
questions.

Note that mainly only 'our' code is shown in
VB.NET sample. Missing standard and/or
generated code is indicated by "..."

Note that a separate class is required for
implementing secondary threads in C#.

323

Imports LTCONTROLLib
Imports System.Threading

Public Class Forml

"Objects for main thread (Forml); "LTConectl can be
"instantiated here with *New®" (could also omit the “New*®
"here and instantiate object later)

Public _LTConnectl As New LTConnect
Public WithEvents _ObjSyncl As LTCommandSync

"Objects for 2nd Thread:

"ATTENTION: If we did a "New" for _LTConnect2 here, this
"object would be owned by the main thread and we would not
"be able to access it from within the thread worker
“function! (unless you pass it somehow through a parameter
“to the worker function?)

Public _LTConnect2 As LTConnect "(NO “New"!)
Public WithEvents _ObjSync2 As LTCommandSync

® Thread object
Private _thl As Thread

Private Sub Forml_Load(ByVal sender As ...)
On Error GoTo ErrorHandler

"Form_Load first starts 2nd thread, then does its own tasks
_thl = New Thread(AddressOf exeCommandeThl)

"This is VERY Important since LTControl runs as STA -
"Otherwise you will get "Querylntrface fails®" exceptions
_thl_ApartmentState = ApartmentState.STA

_thl.Start() “start secondary thread

“connect to first tracker

_LTConnectl.ConnectEmbeddedSystem(*'10.62.34.20", 700)

_LTConnectl._SelectNotificationMethod(_
LTCONTROLLib.LTC_NotifyMethod.LTC_NM_Event, 0, 0)

_ObjSyncl = _LTConnectl. ILTCommandSync

Exit Sub
ErrorHandler:
MsgBox(*'Exception in form load (main thread), " +
Err._Description)

End Sub

Private Sub exeCommandeThl() "secondary thread worker function
On Error GoTo ErrorHandler

"create 2nd instance within new thread (not in main thread!)
_LTConnect2 = New LTCONTROLLib.LTConnect

“connect to 2nd tracker

_LTConnect2.ConnectEmbeddedSystem(**10.62.35.53", 700)

_LTConnect2_SelectNotificationMethod(_
LTCONTROLLib.LTC_NotifyMethod.LTC_NM_Event, 0, 0)

_ObjSync2 = _LTConnect2. ILTCommandSync

While (treadRunning)
"Parse and execute command- input from GUI

"ObjSync2.GoBirdBath " just a sample
End While

Exit Sub
ErrorHandler:
MsgBox(*'Exception in thread worker function, ' +
Err.Description)

End Sub

Private Sub _ObjSyncl StatusChangeEvent(_
ByVal statusChange As LTCONTROLLib.ES_SystemStatusChange) _
Handles _ObjSyncl.StatusChangeEvent
MsgBox(*'StatusChangeEventl1™)

324

End Sub

Private Sub _ObjSync2_StatusChangeEvent(_
ByVal statusChange As LTCONTROLLib.ES_SystemStatusChange) _
Handles _ObjSync2.StatusChangeEvent
MsgBox(*'StatusChangeEvent2™)
End Sub

End Class

// C#
/7777

using System.Threading;
using System.Runtime.InteropServices;

LTConnect connl;
LTCommandSync syncl;

private void Forml_Load(object sender, System.EventArgs e)
{

// In a real application, it would probably not make sense
// to do all this in the FormLoad method. In particular,
// connecting would probably happen thru connect handlers
// (in order to specify address(es) first). Also invoking
// commands (not to tall of an endless loop!) in FormLoad
// is an academic approach. Instantiation and subscribing
// for event handlers however makes sense in FormLoad, as
// also does starting the secondary thread

try
{

connl = new LTConnect();

// Initialize synchronous interface variable
this.syncl = (LTCommandSync)connl. ILTCommandSync;

// Note: Despite of using the "synchronous® interface,
// we get certain information through events, although
// events are "asynchronous® by design.

// without this we would not get event notifications
connl.SelectNotificationMethod(
LTC_NotifyMethod.LTC_NM_Event,0,0);

// So we need to subscribe for every event we are

// interested in. Here we just subscribe for one event
// type: status change events

//

this.syncl.StatusChangeEvent += new
_ILTCommandSyncEvents_StatusChangeEventEventHandler(
this.StausChangeEventHandler);

// start other thread for 2nd tracker
OtherThread otherThread = new OtherThread();

// Create the thread object, passing in the ReceiverThread.
// Receiver method via a ThreadStart delegate. This does
// not yet start the thread.

//

Thread thread = new Thread(
new ThreadStart(otherThread.WorkerFunc));

// IMPORTANT - if missing we get "Querylnterface failed”
thread.ApartmentState = ApartmentState.STA;

// Start the thread
thread.Start();

// Put the Main thread to sleep for 100 millisecond
// to allow secondary thread to become alive (maybe
// not really needed)

//

Thread.Sleep(100);

// Connect to emScon server of tracker 1 (main thread)
connl.ConnectEmbeddedSystem(*'127.0.0.1", 700);

// Run commands in main thread - eternal change face does
// not really make sense, but we want to show parallel

325

// working. see comment at bottom of worker thread function
//
while (true)

syncl.ChangeFace();

connl.DisconnectEmbeddedSystem();
}
catch(Exception except)
MessageBox.Show(except.Message);

}

private void StausChangeEventHandler(
LTCONTROLLib.ES_SystemStatusChange changeEvent)

// handler for status change events; just display to console

System.Console.WriteLine(
""StatusChangeEvent(MainThread)={0}", changeEvent);
3

L1117 777777777777777777777777/7/7777/7/7777///777///7777/7

public class OtherThread

{

LTConnect conn2;
LTCommandSync sync2;

// This method that will be called when the thread is started
public void WorkerFunc(Q)

try

// comments see corresponding part in main thread
conn2 = new LTConnect();

sync2 = (LTCommandSync)conn2.l1LTCommandSync;

conn2.SelectNotificationMethod(
LTC_NotifyMethod.LTC_NM_Event,0,0);

sync2.StatusChangeEvent += new
_ILTCommandSyncEvents_StatusChangeEventEventHandler (
this.StausChangeEventHandler);

conn2.ConnectEmbeddedSystem(**'10.62.35.53", 700);

// Thread worker loop; here Ul commands need to be handled
// Due to sample nature of this code, just do endless

// change face of tracker2 (while tracker 1 does the same

// in parallel. If we started both while in green status,

// each change face will cause status change events, hence
// status change event handlers will be called for both

// trackers (see console output)

while (true) // endless loop!
sync2.ChangeFace();

conn2._DisconnectEmbeddedSystem();
catch(Exception except)

MessageBox.Show(except.Message);
T
}

private void StausChangeEventHandler(
LTCONTROLLib.ES_SystemStatusChange changeEvent)

// handler for status change events; just display to console
System.Console._WriteLine(
""'StatusChangeEvent(OtherThread)={0}", changeEvent);
}

} 7/ class OtherThread

5.3 COM TPI Samples

5.3.1 Sample 5

326

This chapter is related to the 'Sample5' folder of
the emScon SDK Samples.

Sample 5 (LtcVBClient) comes as an LTControl-
based Visual Basic emScon Client.

Note: 'LTControl.dll' must be correctly registered
before proceeding.

See chapter 'LTControl.dll Installation' for details.

If LTControl is correctly registered,
'LtcVBClient.vbp' can directly be opened with
Visual Basic Studio. It should be ready to compile
and run.

In order to create a Sample 5- type application
from scratch, follow the steps:

- Launch Visual Basic 6.0, choose New Project >
Standard exe. Click OK.

- Save the default Form1 as LtcVBClient.frm and
the project as LtcVBClient.vbp (or use any name
of your choice).

- Choose menu Project > References.

- In the 'Available References' list, look for the
entry 'LTControl 2.x Type Library” and check the
box in front of.

Ensure that the file path at the bottom of the
dialog matches the control's registration
location. Otherwise browse for the correct
location.

Finally click OK.

Accessing COM Interfaces

Other than ActiveX (OCX) controls, LTControl.dll,
which is an ATL-type COM object, can also be
used for non-window based applications. For
example, it will also support, pure C-clients
(console applications).

It is neither necessary nor possible to place an
LTControl control object to the VB application

327

Form (as ActiveX controls require).

Interface Variable Declaration

e To access LTControl's interfaces, an object
variable of type LTConnect is needed in the
'General' declaration part of the code behind the
application form. Note the essential keyword
'New":

Dim ObjConnect As New LTConnect

e Just after that, declare an object for each one of
the shown types. Note the keyword
'WithEvents'.(In a real application, only one -
either a synchronous or an asynchronous
interface — should be declared. Declaring both,
as done here for demonstration purposes, could
result in some duplicate data arrivals and other

confusion).

Dim WithEvents ObjAsync As LTCommandAsync
Dim WithEvents ObjSync As LTCommandSync

Connecting / Disconnecting to Server and
Initialization Tasks

A variable of LTConnect object is always required,
whereas, in a real application, only one of the
LTCommandSync or LTCommandAsync objects is
required. Depending on the selected notification
mechanism, LTCommandAsync or
LTCommandSync is to be declared with/without
event support (WithEvents keyword).

The LTCommandSync and LTCommandAsync
variables act like "‘pointers'. These "‘pointers' must

be initialized with the related properties of
LTConnect:

e Just after calling the
ObjConnect.ConnectEmbeddedSystem()
method, initialize the "pointers' as shown
below (In the sample, this is done in the
event handler of the 'Connect' button).
Further, the notification method must be
selected (SelectNotificationMethod ()).

328

e COM methods throw exceptions in case of
failure. The sample code shown below shows
how to handle these (On Error GoTo...). It's
highly recommended to wrap every COM-
method calling function with an 'On Error
Got Error Handler' statement. Do not forget
the 'Exit Sub' statement just before the
'ErrorHandler’ label.

Here is a 'stripped down' version of the Samples'
'Connect' handler. It shows only the essential
steps.

See Sample code for a more sophisticated
'Connect’' handler (with getting the IP address

from user- interface etc.)

Private Sub Button_Connect_Click()
On Error GoTo ErrorHandler

ObjConnect.ConnectEmbeddedSystem '"'192.168.0.1", 700

* This is important if events want to be received
ObjConnect.SelectNotificationMethod LTC_NM_Event, 0, O

Set ObjSync = ObjConnect. ILTCommandSync
Set ObjAsync = ObjConnect. ILTCommandAsync

Exit Sub
ErrorHandler:

MsgBox (Err.Description)
End Sub

The End statement in the error case exits the

application, when connection to the tracker server
has failed.

To disconnect from Tracker Server use a handler

as shown below (Only essential code is shown):

Private Sub Button_Disconnect_Click()
ObjConnect.DisconnectEmbeddedSystem
End Sub

See Sample 7 for an explanation of the call
'SelectNotificationMethod LTC_NM_Event, 0, 0".
However, for VisualBasic applications, it usually
does not make sense to call this method with
other parameters.

Implementing Synchronous Commands

Add a button named InitSync. The button handler
should be completed with the following code:

329

Private Sub InitSync_Click(Q)
On Error GoTo ErrorHandler

ObjSync.Initialize
Exit Sub
ErrorHandler:

MsgBox (Err.Description)
End Sub

Since this is a synchronous call:

e ObjSync.Initialize will not return before the
tracker has finished initializing.

e The Exit Sub statement will not be reached until
initialization is finished. A real application
would at least display an hourglass cursor
while the program resides in the InitSync
function.

The error handler should be implemented in
every command (button) handler, otherwise the
application will terminate in case of an error
(unhanded exception).

Add another Button/Handler Measure Single Point
and implement the handler as shown below. It is
presumed the tracker server is set to 'stationary’
when triggering this command (In Sample 5 code,
this is ensured in the Button_Connect_Click()
handler'. Of course the laser beam must be
attached to a reflector in order to perform this
command successfully. The result — since a
synchronous answer — can be shown directly in a

message box (only x, y and z are shown).

Private Sub StartMeas_Click()
Dim x As Double
Dim y As Double
Dim z As Double
Dim d As Double "d is a dummy variable
Dim b As Boolean

On Error GoTo ErrorHandler
ObjSync.MeasureStationaryPoint x, vy, z, d, d, _

d, d, d, d, d, d, _
d,d, d,d,d,d, b

MsgBox (x & CStr(*™ , ") & y & CStr(" , ") & 2)
Exit Sub

ErrorHandler:
MsgBox (Err.Description)

End Sub

If this command was an asynchronous call, it
would not be possible to display the result within

330

this function. A result display is performed in the
appropriate asynchronous answer handler.

For more details, refer to Sample 5 source code.

Implementing Asynchronous Commands

Visual Basic with 'IntelliSense' provides support
for the available functions of an interface with the
function parameters.

Add a button named InitAsync.
The command handler should be completed with
the following code:

Private Sub InitAsync _Click(Q)
On Error GoTo ErrorHandler

ObjAsync.Initialize

Exit Sub
ErrorHandler:

MsgBox (Err.Description)
End Sub

In contrast to the synchronous initialize function,
this one does not stop at the Initialize() function,
Exit Sub is reached immediately. When tracker
initialization is done, a notification or event is
sent.

Catching Events and Messages

For asynchronous commands, the answers must
be handled by some event mechanism. This could
be Events, Windows Messages (custom window-
bound, registered, WM_COPYDATA).

For Visual Basic, Events are the right choice. The
event mechanism is provided by the
_ILTCommandAsyncEvents interface, which is a
subsidiary of ILTCommandAsync. To activate this
mechanism for a Visual Basic application, we
provided the keyword WithEvents upon the
declaration:

331

Dim WithEvents ObjAsync As LTCommandAsync

When no requirements for catching events exists,
omit the WithEvents keywords in order to save
overhead.

Not only the asynchronous interface — where
absolutely crucial — has an Event interface. Also
the synchronous interface has an Event interface,
_ILTCommandSyncEvents. It is required for
receiving continuous measurements and other
'multi- answer' results (such as results to a
'GetReflectors' call), as well as for error messages
(such as beam broken events), which cannot be
handled synchronous by their nature.

Events are one of the notification methods of the
LT Control. When alternatively using Windows
messages for asynchronous notifications the
keyword WithEvents becomes obsolete. Windows
messages (instead of Events) may be more
appropriate for VC++ clients and will be
discussed later. For VisualBasic, Events are
always the right choice.

e The application must declare what notification
mechanism to use. We did this with the
statement shown below. Without calling this
function in the initialization part of the
application, no notification mechanism will be
activated.

See remarks on continuous measurement in

chapter 'Handling Data Arrival — Continuous

Measurements'.
ObjConnect.SelectNotificationMethod LTC_NM_Event, 0, O

¢ As soon as the WithEvents keyword is declared,
the ObjAsync object (or whatever the variable is
called) is listed in the top left list box of the
Form’s source code window.
Just as an experiment: Remove WithEvents and
save the code — the list entry will vanish.

332

oIf ObjAsync is selected in the list box, a list of all
available event handlers is shown in the right
drop-down list.

eTo generate the code framework for an event
handler, select it from the right list .

Selecting ErrorEvent will generate a function
named ObjAsync_ErrorEvent. Do this and
complete the generated function frame with a
message box to read as follows:
Private Sub ObjSync_ErrorEvent(_

ByVal command As LTCONTROLLib.ES_Command, _

ByVal status As LTCONTROLLib.ES_ ResultStatus)

MsgBox (command & CStr(*" , ') & status)
End Sub

This event handler will now be triggered, for
example on a Beam Broken Event.

Note: The 6Dof part of the interface contains
some event- types with a huge count of
parameters. To mention
‘StationaryProbeMeasData’, which is the most
extreme with 49 parameters (!)

Such excessive parameter lists — depending on VB
version - partly are beyond code- generating
Wizards capability. Lines may be cut, which will
lead to syntax errors (for generated code). In
these cases, the cut lines need to be completed
manually (see type-library for signature).

Extended Synchronous Functions

ObjSync.MeasurStationaryPoint has 18 (basic data
type) parameters. Basic data type parameters are
a requirement in order to use these functions with
(older versions of) VBA (Excel, Access...).

For programming languages supporting user-
defined data types (VC++, Visual Basic), having a
function with only one struct parameter would be
more convenient. LTControl provides a collection
of such 'extended' functions.

333

Note that such extended functions cannot be
provided for Event handlers (Technical
limitation)

One of these extended functions,
MeasureStationaryPointEx, is implemented in the

sample:

Private Sub StartMeaskEx_Click()
Dim result As SingleMeasResultT

On Error GoTo ErrorHandler
ObjSync. MeasureStationaryPointEx result

* display the result

MsgBox(result.packetlnfo.status & CStr(*" , ") & _
result.packetlInfo.packetHeader.Type & _
cstr(™ , ™) & result.dvall & CStr(*" , ") & _
result.dval2 & CStr(" , ") & result.dval3)

Exit Sub
ErrorHandler:

MsgBox (Err.Description)
End Sub

The data type SingleMeasResultT from the C-TPI
is transparent through the COM interface. The VB
application 'knows' this type, through its
reference to the LTControl.

Remark

Do not test explicitly against the VB keyword
'True', if using the Get<FunctionName>Ex methods
of the LTControl, for those commands returning
Boolean data within their result structure. This is
because the Boolean member in these structures —
if true — are (1). However, the VB keyword "True'
evaluates to (-1).

Always test the variable directly, or against 'Not
False'.

334

Example

Dim dataout As ContinuousDistanceModeDataT
ObjSync.GetContinuousDistanceModeParamsEx dataout

1T (dataout.bUseRegion) Then
MsgBox "‘bUseRegion is True'
End If

or

IT Not (dataout.bUseRegion = False) Then
MsgBox '‘bUseRegion is True"
End If

are both correct. However, the following would evaluate to a
wrong result:

IT (dataout.bUseRegion = True) Then
MsgBox "bUseRegion is True" “ No message even flag is true!
End If

Further details see 'Readme.txt' file in Sample 5
folder and code- comments in source files.

5.3.2 Sample 7

The LtcCPPClient provides a dialog- based MFC
C++ application. It uses the synchronous
interface, but also implements an event sink to
catch asynchronous answers (continuous
measurements and error events).

Programmers need to be familiar with ATL/COM
in order to understand the event sink
implementation.

Refer to a COM book for further details.

The LtcCPPClient covers all essential initial steps
for a successful system start and accurate results,
with some disabled code, which demonstrates all
other variants of notification methods, which
may be more familiar to programmers than event

handling.

See comments in source code.

Message Notifications
The disadvantages of message notifications are:

e The result parameters cannot be received
directly.

335

e There are only general messages for all types of
answers.

e Usually only the size of a data block is passed
with the message.

e The data block must be first read with
GetData() (except for WM_COPYDATA) and
then interpreted. Interpretation is done with a
'switch' statement with the ProcessData()
sample code.

See chapter 'Handling Data Arrival — Continuous
Measurements '. See also Sample4 / Step5: This
sample uses directly the emScon C++ interface
(rather than COM from C++, like Sample7 does)

This sample also shows one of the features not
shown so far: How to retrieve the reflectors
known to the system. It also demonstrates
continuous measurements.

View the source code for details. Note that this
code contains a relatively big overhead needed
for user interface issues. The Tracker Server
specific part is not that dominant.

Source Code Description

e Information that is displayed in list boxes, such
as units, CS-type, is automatically read from
the Tracker Server upon startup. What is seen
has been actually selected.

e Changing the items of one list box
automatically creates a 'Set' for the newly
selected item.

¢ On changing units, CS-type etc., some
dependent information may vanish from the
related edit fields to ensure consistency. This is
due to the paradigm 'What you see is selected'.
Do a 'Get' to recover it, which can also be done
by the application.

336

¢ On setting new values, the 'Set' command is
automatically followed by a 'Get' (two beep
sounds). The 'Get' is not required (only for
testing and demonstration purpose).

e Reflectors are read upon client startup. Can be
heard by characteristic beeps. They must be
selected in the reflectors list box.

The GetReflectors button is only required in
'emergency’ cases. If the client starts before the
Tracker Server is ready and the client dialog
shows up, but is not able to read the reflectors

yet.

e The application is based on LTC_NM_Event
notification selection. By changing the
parameter of SelectNotificationMethod in
CCPPClientDIg::OnlnitDialog() (all variants are
prepared), a different notification method can
be activated. However, there is only an
incomplete implementation of ProcessData() for
these alternate methods (reflector processing,
for example, is not yet complete).

e Only the LTC_NM_Event notification method is
fully implemented in this sample. However,
data transfer also works with message
methods. One or the other methods can be
activated by enabling the commented source
code.

Only the last call of SelectNotificationMethod is
effective (there should be only one call to this
function).

See chapter 'Handling Data Arrival —
Continuous Measurements' for details on
obtaining data in general and continuous
measurements in particular.

Handling Data Arrival — Continuous Measurements

Continuous measurement streams are always
handled asynchronous. That is, even if only a
LTCommandSync is implemented (through which

337

the Start Measurement command may be
invoked), the continuous measurement packets
will arrive asynchronously.

A continuous measurement may last very long. It
is not suitable to block execution all the time.

Methods to Catch Packets

e Provide a LTCommandSync object with a call to
SelectNotificationMethod, with LTC_NM_Event as
first parameter.

This setting allows catching the continuous
measurement packets through the event
mechanism. This is especially convenient for
Visual Basic.

e Use one of the Windows Messages notification
methods.
See 'Sample 7' — where this method is shown
(disabled) in the source code.
These may be methods preferred with VC++
clients, especially if the programmer is not
familiar on setting up event sinks. On the other
hand, receiving Windows messages within VB
application is permissible.

e The MultiMeasResultT structure only covers the
first item of the array. The rest of the
INumberOfResults - 1-array elements are padded
to the packet without gaps.

Continuous measurement packets mostly contain
more than one measurement value. Iteration
through an array of measurements is necessary.

e A code fragment, on how to process a continuous
measurement packet using the event mechanism,
is shown below. This is a client implementation,
stripped down and altered from sample 7, of the
ContinuousPointMeasDataReady event, which
exists for both _ILTCommandSyncEvents and
_ILTCommandAsyncEvents interfaces

338

void __stdcall OnContinuousPointDataReady(long resultsTotal,
long bytesTotal)
{

CString s;
VARIANT vt;
Variantlnit(&vt);

it (n_pLTConnect == NULL)
return;

m_pLTConnect->GetData(&vt);

MultiMeasResultT *pData =
(MultiMeasResultT *)vt.parray->pvData;

ASSERT (pData->INumberOfResults == resultsTotal);
for (int i = 0; 1 < pData->INumberOfResults; i++)
s.Format(_T(C" %.71F, %.71F, %.71F"),
pData->data[i]-dvall,
pData->data[i]-.dval2,
pData->data[i]-.dval3);
// this is application dependent. May differ in your app
m_pMainWnd->m_edit_Result.SetWindowText(s);

} 7/ for
} 7/ OnContinuousPointMeasDataReady()

*On using a Windows message notification
method, LTC_NM_WM_Notify, it looks quite
similar. However, with the event method there
is a unique event function for just receiving
continuous results. With message notify
methods, all types of data packets come in
through the same message handler. The data
must be interpreted with a 'switch' statement.
This is done in the ProcessData() function.
Use of the CESAPIReceive class of the C++
interface is another possibility.

eThe following implementation demonstrates
receiving, not only data of continuous

measurements, but also, any kind of data.

LRESULT CCPPClientDIg: :OnNotifyMsg(WPARAM wParam, LPARAM IParam)

{]
CString s;
VARIANT vt;
Variantlnit(&vt);
m_pLTConnect->GetData(&vt);

// wParam = msg ID = cookie!
ProcessData(vt.parray->pvData, wParam);

return true; // return non-zero if msg handled

- Activating this function calls
SelectNotificationMethod() with the following
parameters:

339

// cookie must be in the valid range for a user defined message

m_pLTConnect->SelectNotificationMethod(LTC_NM_WM_Notify,
(long)m_hWnd,
MY_NOTIFY_MSG);

- The message ID (which also acts as a cookie

here) is defined as:
#define MY_NOTIFY_MSG (WM_USER+99)

- Entry in the message map must exist as

follows:
ON_MESSAGE(MY_NOTIFY_MSG, OnNotifyMsg)

- Provide the ProcessData() subroutine.
Not every type of data packet is fully
implemented:

340

void CCPPClientDIg: :ProcessData(void *ptr, int nCookie)
{
CString s, s2;
PacketHeaderT *pHeader = (PacketHeaderT*)ptr;
switch (pHeader->type)
{
case ES DT _MultiMeasResult: // most frequent ones on top
MultiMeasResultT *pData = (MultiMeasResultT *)ptr;
for (int i = 0; i1 < pData->INumberOfResults; i++)
s.Format(_T(C"%IF, %If, %l1f"),
pData->data[i].dvall,
pData->data[i]-dval2,
pData->data[i]-.dval3);
// do something with data -
// application dependent
m_staticContMeas.SetWindowText(s);
} 7/ for
}
break;
case ES_DT_Error:
ErrorResponseT *pCmdData = (ErrorResponseT *)ptr;
s.Format(_T("error: command=%d, status=%d\n'),
pCmdData->command,
pCmdData->status);
AfxMessageBox(s);
break;
case ES _DT_SingleMeasResult:

SingleMeasResultT *pData = (SingleMeasResultT *)ptr;
ASSERT(pData->measMode == ES_MM_Stationary);

// TODO: do something with data
break;
case ES DT_ReflectorPosResult:
y // Not implemented

break;

case ES_DT_Command:
break; // nothing to do

default:
Beep(100, 100); // all other data currently unhandled
} /77 switch
} 7/ ProcessData()

For further details refer to the sample source
code.

Limitations for high frequency continuous
measurements (like loss of data) may occur due
to hardware (LAN, PC performance) limitations.
Tests have shown that under good conditions
(LAN, PC, Client program design), the LT
Control is able to handle the maximum data rate
of 1000 points per second, even through the event
notification mechanism, which might have
slightly less performance than the message

341

methods — Low performance of IDispatch
Interfaces.

Further details see 'Readme.txt' file in Sample 7
folder and code- comments in source files.

Handling Continuous Measurements on using
the emScon C++ interface directly (which is much
more common than using the COM interface
from a C++ application) can be found in
Sample4/Step5.

Other sources (for VB) can be found in Sample13.
See Readme.txt files at the Samples locations.

5.3.3 Sample 8

This sample works only with Excel 2000 and
higher, and consists of an Excel sheet with a VBA
macro LtcExcel. Tracker server client VBA-
programming with Excel 97 (Office 97) is not
recommended.

See chapter 'VBA Macro-Language Support
(Excel, Word, Access) '.

The essential difference between a VB client and
an Excel client is that the Excel sheet takes the
role of a VB Form. That is, data input/output goes
through cells.

Further details see 'Readme.txt' file in Sample 8
folder and code- comments in source files.

5.3.4 Sample 14

This sample shows integration of emScon COM
TPI to a C# application. The focus of this sample
is on how accessing COM methods from C#. An
application just calling SetCameraParams /
GetCameraParams (using synchronous interface)
may not be very much related to practice.

This sample is preliminary an might be improved
in future SDK versions.

342

Note: In order to build/run this sample, the .NET
framework and VisualStudio V7
(VisualStudio.NET) is required.

Further details see 'Readme.txt' file in Sample 14
folder and code- comments in source files.

5.3.5 Sample 15

This sample shows integration of emScon COM
TPI to a VB .NET application. The focus of this
sample is on how accessing COM methods from
VB .NET. The application just demonstrates some
system settings.

This sample is preliminary an might be improved
in future SDK versions.

Note: In order to build/run this sample, the NET
framework and VisualStudio V7
(VisualStudio.NET) is required.

Further details see 'Readme.txt' file in Sample 15
folder and code- comments in source files.

5.3.6 Sample 18

LiveVideo display application. This sample is
based on the 'LTVideo2.ocx' ActiveX COM
control.

Attention: emScon 3.0 servers require Version
3.0 'LTVideo2.ocx'. This version of the control is
backward compatible to older emScon servers.

See Chapter 8 / Special Functions / Live Image
display for details.

5.3.7 Sample 20

Concerning its functionality, this sample is
similar to Sample 5, i.e. an LTControl- based
client. However, it is based on Borland Delphi 7
instead of Visual Basic.

343

If no Delphi 7 programming environment is
available, you may download a trial version from
Borlands homepage.

For details, refer to the 'Readme.txt' file in the
Sample20 folder and to heavily commented code.

344

6 C# - Interface

6.1 Client Programming with C#

6.1.1 Introduction

The samples 14 and 15 (see chapter 4, COM-
Interface) show how to embed the LTControl
COM object into C# applications.

However, there is also a C# class- interface
similar to the C++ class- interface (shown in
Samplel6). Using the C# class interface is shown
in Samplel?.

In order to use this interface, the .NET
framework and VisualStudio V7
(VisualStudio.NET) is required for client
application programming,.

6.1.2 C# Application Programming

The C# class interface is represented through
include file 'ES_MCPP_API_Def.h' (MCPP relates
to 'Managed C++). This file defines two abstract
classes, 'CESCSAPICommand' and
'CESCSAPIReceive’, from which a C# application
must derive its own classes. This is quite the same
approach as for the C++ interface.

Note the name prefixes 'CESCSAPI' (C#) versus
'CESAPI' (C++).

Since C# does not support the C++ like 'include-
file' approach, the classes defined in
'ES_MCPP_API_Def.h' must be packed into a
(Managed C++) DLL. This DLL then can be added

as reference to a C# application.

345

For convenience, this DLL named
'ES_MCPP_API_Wrapper.dll' is also provided
with the SDK (ES_SDK\ Lib\ Unicode).

If the DLL should be missing, or if it needs to be
rebuilt due to changes in the
'ES_MCPP_API_Def.h' file, Sample 16 shows how
to create this DLL.

(Note: An emScon programmer may make
changes to the files 'ES_MCPP_API_Def.h' and/or
'ES_CPP_API_Def.h', although this should
normally neither be necessary nor recommended)

Sample 17 shows a C# Application based on the
emScon C# class interface.

6.1.3 Sample 16

This sample shows on how to create the required
'ES_MCPP_API_Wrapper.dll' from the
'ES_MCPP_API_Det.h' file.

This is quite simple: There is only one source file
'ES_MCPPAPIWrapper.cpp' which contains
nothing else than the statement

#include "ES_MCPP_API_Def.h"

In addition, some well known emScon C- include
files need to be provided in order to compile this
project. (ES_C_API_Def.h, Enum.h etc.)

Note that the resulting DLL
'ES_MCPP_API_Wrapper.dll' has already been
built and added to the SDK for convenience. It is
therefore not really required to build it as shown
in Samplelé6.

However, Samplel6 may help developers to
debug their applications if code in
'ES_MCPP_API_Def.h' needs to be traced.

Further details see 'Readme.txt' file in Sample 16
folder and code- comments in source files.

346

6.1.4 Sample 17

This sample implements a C# emScon application
based on the C# class interface. The C++ interface
cannot be used directly in C# applications. A
specific C# class interface is therefore provided as
described above.

Note the difference to Samples 14/15, where the
emScon COM interface was used. The one and
the same COM object ca be used for C++and C#
as well as for visual basic, VBA (e.g. Excel) and
VisualBasic.NET applications.

The programming approach is quite the same as
for the C++ interface: Derive classes from both,
'CESCSAPICommand' and 'CESCSAPIReceive'
classes, override the 'SendPacket' virtual function
in 'CESCSAPICommand' and override those
virtual functions of 'CESCSAPIReceive' in which
the application is interested in.

The application must provide Socket
communication, and the same conditions as for
C++ applications apply: Commands are invoked
by calling 'CESCSAPICommand' member
functions and arriving data from the socket must
be passed to the 'CESCSAPIReceive::ReceiveData'
Parser. Note that only one packet at a time must
be passed to the parser. The sample shows one
possible approach: First always peek the packet
header, then only read as many bytes as the
"packet- size' variable indicates. The helper
method CESCSAPIReceive::GetPacketHeader() is
useful in this context.

There is a difference to the C++ interface
concerning continuous measurements. If a
continuous packet arrives, it contains only the
measurement header info, but not the elementary
measurements itself (like in C++ in a variable
sized array). The application must rather use the
CESCSAPIReceive :<MeasType>MeasValueGetA
() function to access the measurements.

347

See code in sample 17 (file
'EmsyCSApiConsoleClient.cs'), for example in
function 'OnMultiMeasurementAnswer()' for
details.

As already known from C++ samples, sample 17
requires a separate Receiver Thread since it is a
Console application. In Windows applications,
the Window Message Loop can be used instead.
Hence windows application do not require to be
designed as multi threaded applications. See
related C++ Windows emScon applications.

Make sure the 'ES_MCPP_API_Wrapper.dll' is
added as reference to the project and that the
reference path points to the correct location.
(Sample 17 expects the DLL being in the
applications runtime directory. However, this
may be changed of course).

Sample 17 in not sophisticated in terms of error
/exception handling and command
synchronization. Remember that emScon
commands are asynchronous and it is the
applications responsibility not to send a new
command to the server before the previous one
has completed.

Answer- handlers (virtual overrides) for all types
of answers are implemented.

Also calls for all emScon commands are
implemented, but all except one are commented
in the sample code (any other call may be enabled
instead). Due lack of synchronization, the
provided sample application will mostly mess-
up if sending more than one command.

The most simple way to synchronize the
application was providing an old- style key-press
user- interface (as done in Sample 9). This means
the user performs synchronization by not
pressing the next key before the answer of the
previous command has arrived.

348

See also the many comments in the code.
This sample is preliminary an might be improved
in future SDK versions.

Further details see 'Readme.txt' file in Sample 17
folder and code- comments in source files.

6.1.5 Multi- Tracker C# Applications

Applications based on the native' C# emScon
interface behave much the same like applications
based on the native C++ interface. The approach
for multi-tracker controlling is therefore very
similar to what's said under section 4 'Working
with multiple trackers' - apart from the (language
specific) differences that apply between C++ and
C#.

Multi- threading is neither required nor
recommended in order to support multiple
trackers (except if there is a Console- application,
where multi- threading is required even for a
single tracker application). Just designate an
instance of a Sender and Receiver object to each
one of the trackers (as described above for the C#
interface and like applied in Sample 17).
However, be aware that Sample 17 is a Console
application and therefore requires multi-
threading by design. If it was an ordinary
Windows application, we would not require
receiver-threads since the Windows messaging
mechanism could be used for handling incoming
data. Again: The secondary thread in Sample 17
(or even 2 of them if using 2 trackers) is NOT due
to multiple tracker support; it is because a
Console applications main thread blocks while
waiting for user- input; hence we need a separate
listener thread to process incoming data during
blocking periods.

Other than with the C++ SDK Samples, the Sender
and Receiver classes of Sample 17 do not share
any common data and therefore can just be

349

instantiated for several trackers without redesign.
The only thing one may want to do: Introducing a
'cookie' property to the receiver class so that we
will be able to recognize which tracker an answer
comes from (The cookie approach was already
described in section 4 'Working with multiple
trackers'). Alternatively, we may directly pass
the references of the Sender objects to the related
Receiver objects. This, however, does not always
make the cookies obsolete.

The code- fragments below show Sample 17 -
extended with the cookie- approach - and with a
2nd set of Sender / Receiver instances for a 2nd
tracker. Note that Sample 17 remains somehow
academic since it calls only one command (for
both trackers) upon startup, waits for the answers
and then immediately exits.

However, it shows the techniques and basics in
order to understand on how to design a mature
multi- tracker application.

The only extension we make to class
CESCSMyAPIReceive: Add an integer property (=
cookie) and let it be initialized through a
constructor parameter:

class CESCSMyAPIReceive: CESCSAPIReceive
// constructor gets an additional parameter

public CESCSMyAPIReceive(Socket s, int cookie)
{

sock = s;
_cookie = cookie;

. // leave all the rest (except evaluating
// cookie in event handlers)

private int _cookie; // to identify where answer comes from

We can then just duplicate all variable instances
and calls for a 2nd tracker. This all happens (in
Sample 17) in the Main() function:

350

static void Main(string[] args)
Console.WriteLine("Application Start™);
try

// Create 2 sockets, s and s2, for two trackers and
// connect to servers (note: hardcoded IP"s due to sample)

Socket s = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);

System.Net. IPAddress ipAdd =

System.Net. IPAddress.Parse(*'10.62.34.30");
System.Net. IPEndPoint remoteEP = new IPEndPoint(ipAdd, 700);
s.Connect(remoteEP);

Socket s2 = new Socket(AddressFamily.InterNetwork,
SocketType.Stream, ProtocolType.Tcp);

System.Net. 1PAddress ipAdd2 =

System.Net. IPAddress.Parse(*'10.62.35.53");
System.Net. IPEndPoint remoteEP2= new IPEndPoint(ipAdd2,700);
s2_Connect(remoteEP2);

// Create sender and receiver class (2 instance of same
// Command and Receiver class), only the cookie (and socket
// parameter of course) is different

CESCSMyAPICommand apiCommand = new CESCSMyAPICommand(s);
CESCSMyAPIReceive apiReceive = new CESCSMyAPIReceive(s, 1);

CESCSMyAPICommand apiCommand2 = new CESCSMyAPICommand(s2);
CESCSMyAPIReceive apiReceive2 = new CESCSMyAPIReceive(s2,2);

// We need a receiver thread due to the Console application
// nature of this sample, NOT primarily because of two

// trackers! However, it makes sense here to dedicate

// a separate receiver thread to every tracker (although

// we could principally deal with one shared thread - we

// would have to pass both sockets and both receiver objects
// to the ReceiverThread worker function and handle

// incoming data from both sockets within one thread).

ReceiverThread receiverThread =
new ReceiverThread(apiReceive, s);

ReceiverThread receiverThread2 =
new ReceiverThread(apiReceive2, s2);

// Create the thread objects
Thread thread =
new Thread(new ThreadStart(receiverThread.Receiver));

Thread thread2 =
new Thread(new ThreadStart(receiverThread2.Receiver));

// Start the threads
thread.Start();
thread2.Start();

// Spin for a while waiting for the started

// thread to become alive. (really needed?)

//

while ('thread2.l1sAlive);
Thread.Sleep(100);

// Make some calls - Typically, initial calls after

// application start may be issued here. Note that these
// calls are asynchronous; we must not make more than

// one single call (per Tracker!) here. There is no waiting
// until first tracker has changed face; the call

// immediately returns and the call to 2nd tracker is also
// issued so that both tracker do a change face virtually
// at the same time.

apiCommand.ChangeFace(); // make a call to 1st tracker
apiCommand2.ChangeFace(); // make same call to 2nd tracker

// Do not make next call here! If there is a "chain of

// initialization commends® to be executed, subsequent

// call(s) must be triggered by the answer handler(s)

// of ChangeFace. However, note that apiCommand/apiCommand2
// objects are local and therefore not accessible from

// within the event handlers. This is just due to sample

// code - nothing prevents you to relocate these objects so

351

// that they are accessible from event handlers (and Ul
// handlers, such as ButtonPress handlers)

// The rest of the code does not make sense to a real

// application. We just stop for a few seconds in order to
// allow receiving the command answers. If we would not
// stop the Main() function here, it would immediate close
// connections and exit, hence there would be no chance to
// get the command acknowledgements. Note that exiting the
// Main() function means exiting the application.

// In a real (Console) application, the Main() function

// here would rather enter an user-interface loop and

// wait stop/loop for user- input.

Thread.Sleep(7000); // let main thread sleep for a while
// (That is, Main function Stops here)

// disconnect from server
s.Close();
s2.Close();

// Request receiver Threads be stopped
thread.Abort();
thread2.Abort();

// Wait until Threads finished
thread.Join();
thread2.Join();

catch

Console.WriteLine(*"Main init failed (No Connection ?)");

Console.WriteLine("Application End™);
} 7/ Main(Q

The last thing to consider: Check for the cookie in
the incoming answer so that we know which
tracker the answer came from.

We could then trigger the next command right
here in the answer handler (in order to
implement synchronized command-chains as
often used upon application startups). This
would require relocating the 'apiCommand' and
'apiCommand?2’ variables - these are currently
local to the Main() method and therefore cannot
be accessed from within Event handlers.
However, noting prevents us to relocate these so
that they can be accessed from anywhere else (or
to pass the object references to the receiver class -
this is shown as comment in the code below).
Note that there is no 'OnChangeFaceAnswer()".
All non- data returning commands trigger the
general 'OnCommandAnswer()' handler. So we
have to check not only fort he cookie but also for
the command.

Alternatively, we directly could pass a reference
of the Sender object to the Receiver object. This

352

approach may make cookies superfluous in some
situations. This technique is also shown in the
code below as comment.

public override void OnCommandAnswer(BasicCommandRT answer)
ES_Command cmd = answer.command;

string s = "Derived OnCommandAnswer() was called, cmd="" +
cmd.ToString() + ' fromTracker=" + _cookie.ToString(Q);

Console.WriteLine(s);

// First check whether the call relates to the command

// whose answer we are expecting.

//

// By then evaluating the cookie we can identify the

// source of the answer (tracker 1/2) and - if required -
// invoke a subsequent command.

// Currently apiCommand/apiCommand2 are not accessible
// since local to Main; hence commented. You may relocate
// apiCommand/apiCommand2 objects in order to get access
// form anywhere (most likely from Ul control handlers,
// such as ButtonPress handlers)

if (answer.command == ES_Command.ES_C_ChangeFace)

{

Vil

// Cookie approach, it is required that apiCommand and
// apiCommand2 are visible and public to receiver class

if (_cookie == 1)

apiCommand. StartMeasurement(); // to first tracker
else if (_cookie == 2)

apiCommand2. StartMeasurement(); // to 2nd tracker

*xx [

Vhakaiad

// Alternative with Sender objects passed to Receiver:
// this is a cookie-less approach. The constructor of
// CESCSMyAPIReceive then needs looking like this:

//

// public CESCSMyAPIReceive(Socket s,

// CESCSMyAPIReceive apiCmd)
/77 {

// sock
// _cmd
/7 3

//

// and construction would look like:

//

// CESCSMyAPIReceive apiReceive =

// new CESCSMyAPIReceive(s, apiCommand);
//

// CESCSMyAPIReceive apiReceive2 =

// new CESCSMyAPIReceive(s2, apiCommand2);
//

// subsequent calls are then automatically directed to

// the correct tracker; there is no need to distinguish
// the correct target by a cookie. However, this approach
// only is suitable if both tracker have the identical

// sequence of commands to perform.

S
apiCmd; //_cmd is a CESCSMyAPIReceive member

_cmd.StartMeasurement(); // always goes to correct tracker

Fxxk [

/***

// As soon as we need to apply different commands to
// answers for different trackers, we need the cookies
// anyway in spite of passing command references:

if (_cookie == 1)

_cmd.StartMeasurement(); // different subsequent..
else if (_cookie == 2)

_cmd.GoBirdBath(); // .. command for 2nd tracker

***/
Y /7 0f
b

353

4 Base User
Interface (BUI)

7.1 Client Programming and BUI

7.1.1 Measurement BUI versus Compensation
Applications

The emScon software comes with several
graphical User- Interfaces represented by a WEB-
application (running on internet explorer).

It is important to distinguish between standalone
applications and integrated applications.

The Compensation-, Field Check- and Tracker
Server modules are pure ‘stand- alone’
applications. For details see the designated
special manuals fore these applications.

On the other hand, the so-called Measurement-
‘Base User Interface” (BUI) does not make sense to
be used as a stand- alone application, except for
system testing reasons.

This chapter exclusively addresses the
Measurement- BUI.

The BUI requires a Master- application the BUI is
hosted by. It mainly acts as a ‘Display’
component of such a host application. There is
also a Toolbar to control the most common
Tracker actions. However, there is (other than in
the stand-alone WEB applications) no way to
perform settings such as “Units’, CS- Type, Filters
etc. These have to be performed by the Master
application the BUI is hosted by.

354

7.1.2 EmScon Basic User Interface (BUI)

The emScon Base User Interface (emScon BUI)
provides a graphical interface to emScon's most
common functions. Access to it is provided
through the Microsoft Internet Explorer.

The BUI includes:

e A Toolbar for common sensor control such as
sensor moving or triggering measurements.

e A window for result display (DRO).

e Web pages providing access to selected sensor
and system settings.

7.1.3 Integration of BUI into applications

The BUI can be used as standalone application for
testing reasons. However, there is no real
practical use for the BUI as a standalone
application.

The BUI, however, allows to be integrated to
client applications. This approach is
demonstrated in Sample 13.

The BUI provides a graphical interface to
emScon. However, general system settings, such
as Units, CS-type etc. are not provided by the
BUI. An application hosting the BUI will have to
do emScon settings control through the ordinary
TPI interface. Also retrieving measurement data
has to be provided through the TPI (Unless one
wants just to VIEW the data through the DRO).
The BUI can be launched from within an
application (see Sample 13), if not already
running. However, it is also possible to start the
BUI manually and execute a 'data- catcher'
application (without BUI launch) after that. Such
an application then is capable to process data
(triggered by the BUI) as far as appropriate
handlers are provided.

355

7.1.4 Sample 13

This sample is a 'BUI- launcher and - listener’, to
launch the emScon BUI from within a client
application. That is, the BUI becomes part of the
client application. The client application (=BUI
host) is mainly used to 'catch' measurements
triggered by the BUI in order to do further data
processing.

The application shows how to perform initial
settings (that cannot be set with the BUI) and how
to catch the measurements (triggered from the
BUI). These measurement- results are just written
to the applications dialog (which does not really
make sense because they are already displayed
on the BUI Page. A real application would do
further processing, such as storing the
measurements into a database etc.)

The sample is in Visual Basic. However, the
principles would not change for a C++
application.

Further details see '"Readme.txt' file and code-
comments in 'BUILaunch.frm' source- file in
Samplel3 Folder.

Also refer to BUI documentation (User Manual)
for details.

Hint: Even if you are not interested in a 'BUI-
controlled' application, this sample may still be
useful to demonstrate the handling of continuous
measurements on using the COM (LTControl)
interface. That is, if writing emScon application
with VisualBasic or VBA (Excel etc.). At the very
end of the file 'BUILaunch.frm', you can find an
event- handler function that demonstrates on
how to receive continuous measurements
through the emScon COM interface.

356

8 Selected
Commands In
Detall

8.1 Special Functions

Some of the more complex
commands/procedures, which have been referred
to in this manual are described in detail, with
some background information.

8.1.1 Get Reflectors Command

The GetReflectors command is often
misinterpreted. GetReflectors is used to 'ask' the
Tracker Server, which reflectors are currently
defined, and to get the relation between reflector
names and reflector IDs.

Related Commands
° SetReflector
. GetReflector

357

Comments

GetReflectors causes as many GetReflectorsRT data
packets to arrive, as reflectors are defined in the
tracker database. Each one of these packets

contains the following information:

struct GetReflectorsRT
{

struct BasicCommandRT packetlinfo;

int iTotalReflectors;

int iInternalReflectorld;

enum ES_TargetType targetType;

double dSurfaceOffset;

short cReflectorName[32]; // Unicode!
};

iTotalReflectors

iTotalReflectors is just for programmers’
convenience.

e Names the number of reflectors known to
the system and has the same value in every
packet.

e Provides information, on arrival of the first
packet, as to how many packets are still
outstanding.

e Counts the incoming packets to know when
the last one has arrived.

linternalReflectorld / cReflectorName

The commands ilnternalReflectorld and
cReflectorName provide important information for
the user interface/programmer

e The reflector name is a string value (in
Unicode), which is see on the user interface of
the application software.

e This reflector name is an alias for the reflector
ID and cannot be resolved by the system.

e The system can (internally) only deal with
reflector IDs, which are integer numbers.

e The commands take/return a reflector ID as a
parameter.

358

It is crucial to provide the correct reflector ID to
SetReflector.

Passing the ID of an unintended (but existing)
reflector will cause wrong measurement
results.

Programmers often fill all reflector names in a
list box. When the user selects one of the
reflectors shown in the list box, a SetReflector
command is carried out.

Hence the need for a lookup table'".

List index

It is not correct to use the index of the list box
as a reflector ID. This is because the reflector
IDs are arbitrary in sequence and may contain
gaps.

The programmer must not assume that the
reflector IDs are a sequence of 1....n without
any gaps. Although most systems may deliver
reflectors with sequential reflector IDs starting
from 0 with no gaps

This may not be presumed. Every system
behaves differently.

GetReflectors may deliver for example 3
reflectors with the following Names and IDs:

Name ID

CCR-75mm
CCR-1.5in
TBR-0.5in

Lookup Table

The list box indices will range from 0 to 2, when
the three names are entered in a control list box,

in the order shown above. A lookup table is

therefore required to match the index values to
the reflector IDs. Such a lookup table is shown

below:
Index ID
0 7

359

1
2

The call to SetReflector must pass the reflector ID,
not the list box index. A frequent source of a
programming error.

Reflector Name — Unicode Format

The reflector name is always in Unicode format,
irrespective of whether the application is in
Unicode or ANSL

Names in C/C++ applications may have to be
converted accordingly.

See "Sample 7" which implements reflector
handling with a list box. It uses (rather
complicated) a MFC Map as a lookup table.
Simple solutions can be achieved with just an
integer array.

See also 'Sample 9' on how to interpret reflector
names in Unicode format correctly.

Persistence of Reflector Name - ID Mapping

Each tracker- compensation has its own set of
reflector- definitions! However, the mapping
between reflector-name and ID remains the same
throughout all available tracker-compensations!

Example: A T-Cam is mounted on the tracker;
hence, the active tracker compensation is one that
was performed with a mounted camera. Assume
this tracker - compensation has definitions for
three valid reflectors as follows:

Name ID
CCR-75mm

CCR-1.5in

TBR-0.5in

360

Now, the T-Cam is removed, and hence another
tracker- compensation becomes active (one that
was performed without a mounted T-Cam). Let's
assume that this compensation has only two
reflector definitions: CCR-1.5in and TBR-0.5in.
Conveniently, the mapping between name and
ID remained the same as it was in the previous
compensation:

Name ID
CCR-1.5in

TBR-0.5in

If reflector ID 7 was the active one at the time the
camera was removed, you will now get a ‘'wrong
current reflector’ error message on executing
reflector- dependent commands. Thus, the
application must first set one of the now available
IDs 2 or 3 with the 'SetReflector' command.

The fact that the relation between reflector ID and
Name remains the same throughout all tracker-
compensations may be convenient to application
programmers since there is no need to re-query
all reflector mappings upon a tracker
compensation change.

8.1.2 Still Image Command

For trackers equipped with an Overview Camera,
the GetStilllmage command takes an image and
delivers it as a file image data block.

Related Commands

e GetStilllmage

SetCameraParams

GetCameralParams
StilllmageGetFile (COM, not in C++)
WriteDiskFile (COM only)

361

These commands are available on all TPI levels
(C, C++, COM). Set/GetCameraParameters is not
explained here further.

Preconditions

The following preconditions have to be fulfilled:
e Camera mounted on tracker

e System settings: “Has video” flag activated

e Tracker must be in camera view (command
ActivateCameraView)

Application of GetStillimage — C/C++

The application of GetStilllmage is explained
below using code fragments.

GetStilllmage must be called with the parameter
ES_SI_Bitmap. The parameter ES_SI_Jpeg is not
supported yet.

e The answer to a successfully executed
GetStilllmage command results in a
GetStilllmageRT data structure.

e Apart from the common header information,
this structure echoes the file type
(imageFiletype =ES_SI_Bitmap), the size of the
file (IFileSize), and the first Byte of the file
(cFileStart).

e The following code accesses the core file data
and writes it to a physical disk file:

362

// assume pData contains the data- block received
// to a GetStilllmage(ES_SI_Bitmap) command

long IFileSize = ((GetStilllmageRT*)pData)->IFileSize;
char cFileStart = ((GetStilllmageRT*)pData)->cFileStart;

FILE *pFile = NULL;
if ((pFile = fopen('C:\\Temp\\img.bmp", "wb™)) I= NULL)

long IWritten =
fwrite(&cFileStart, 1, IFileSize, pFile);

if (IWritten != IFileSize)

printf("File could not be written(\n");
else

printf("wrote %d bytes\n", IWritten);

fclose(pFile);

The disk- file can be skipped and a memory-
mapped file can be used instead, or

With the file structure of the Bitmap file, the
bitmap information can be extracted from the
data block and used directly with GDI
functions.

In the code above, it was assumed that pData
contained a complete GetStilllmageRT structure
with complete file data padded.

WinSock2 API / MFC CAsyncSocket

Using WinSock2 API or MFC CAsyncSocket,
to read directly from the socket, must consider
the implications of large file data.

Since the file data is relatively big (~70 KB), it
is very unlikely that it will arrive as one single
data block over TCP/IP.

Provisions must be made to repeat reading
data until the data packet is complete.

A technique to achieve this is shown in the
OnMessageReceived code sample

See chapter 'Sample9' and chapter 'Queued
and Scattered Data'.

COM TPI within C/C++

When using the COM TPI (within a C/C++
application), the results of the LTControl's
GetStilllmage (synchronous) function can be

363

assumed to be complete. See related code extract
below. When receiving Stilllmage data
asynchronously (Event Handler,
MessageHandler), the difference is that the data
will not be provided directly through a
parameter. So ILTConnect::GetData() must be used
first.

Note the Variant- type parameter of the fileData.

364

GetStilllmage — Synchronous
void CCPPClientDIg: :OnButtonStilllmage()

{

}

HRESULT hr = 0;
long IFileSize;

VARIANT vt;
VariantInit(&vt);

try

it ((hr = m_pLTCommandSync->GetStilllmage(ES_SI_Bitmap,

&IFileSize, &vt)) == S_0K)

{
ASSERT(vt.parray->rgsabound[0].cElements ==
(unsigned long)IFileSize);
FILE *pFile = NULL;
// write file to current runtime location
it ((pFile = fopen(image.bmp*™, "wb™)) = NULL)
{
long IWritten = fwrite(vt._parray->pvData, 1,
IFileSize, pFile);
if (IWritten != IFileSize)
AfxMessageBox(_T("'File could not be written\n'));
fclose(pFile);
// Display the image using MSPaint,
// but FTirst close previous instance
//
HWND hWnd = ::FindWindow(_T("MSPaintApp"), NULL);
if (hWnd) /7 paint is already running - close first
: :SendMessage(hWnd, WM_SYSCOMMAND, SC_CLOSE, 0);
WinExec("'mspaint.exe image.bmp', SW_SHOWNOACTIVATE);
Yy /7 if
}y /7 if

catch(_com_error &e)

Beep (4000, 100);
AfxMessageBox((LPCTSTR)e.Description());

¥

VariantClear(&vt); // Avoid memory leak

GetStilllmage — Asynchronous

void __stdcall OnStilllmageDataReady(ES_StilllmageFileType

{

}

imageFileType, long fileSize, long bytesTotal)

ASSERT(m_bUseAsync) ;

VARIANT vt;
VariantInit(&vt);

m_pLTConnect->GetData(&vt);

ASSERT(vt.parray->rgsabound[0] .cElements ==

(unsigned long)bytesTotal);

GetStilllmageRT *pData =

(GetsStilllmageRT *)vt.parray->pvData;

ASSERT (pbData->IFileSize == fileSize);

// Do something with the file, for example write out
// to a disk file — like shown in code above

VariantClear(&vt); // Avoid Memory leak

COM/VB(A)

Neither type-casts nor writing binary files are
common tasks in VisualBasic. In order to achieve

365

the same Stilllmage features from VB(A), some
convenience Functions have been added to the
COM TPI: StilllmageGetFile and WriteDiskFile.

This is an extract from an Excel application. The
image is displayed in an Image dialog control

(named Imagel):

Private Sub GetStilllmage Click()
On Error GoTo ErrorHandler

Dim fileData As Variant
Dim size As Long

ObjSync.GetStilllmage ES_SI_Bitmap, size, fileData
ObjConnect.WriteDiskFile fileData, ''C:\Temp\img.bmp"

* Now load picture into sheet
Imagel.Picture = LoadPicture(*'C:\Temp\img.bmp™)

Exit Sub
ErrorHandler:

MsgBox (Err.Description)
End Sub

Event handler

Within an event handler, the file data structure
must be extracted first, since GetData delivers the
complete data packet including header
information. A similar helper function is required
in VB, since no casting to (GetStilllmageRT*) is
available.

See chapter 'Continuous measurements and VBA' for
similar method using
ContinuousDataGetHeaderInfo.

Private Sub ObjAsync_StilllmageDataReady(ByVal imageFileType As
LTCONTROLLib.ES_StilllmageFileType, ByVal fileSize As Long,
Byval bytesTotal As Long)

Dim fsize as Long “dummy

ObjConnect.GetData data "Get whole packet (incl header)

" retrieve out size and file data
ObjConnect.StilllmageGetFile data, fsize, file

ObjConnect.WriteDiskFile file, "img.bmp"

* Now load picture into sheet
Imagel.Picture = LoadPicture(*img.bmp™™)

End Sub

Although designed for use with VB,
StilllmageGetFile and WriteDiskFile can also be
used in LTControl based C++ applications.

366

Image Click Position

Click positions on the Image are currently written
out to Excel cells. These values can be used to
calculate relative tracker movement angles, call
MoveRelativeHV to direct the tracker there and
then request a new Image.
Private Sub Imagel_MouseDown(ByVal Button As Integer, ByVal
Shift As Integer, ByVal X As Single, Byval Y As Single)

Beep

ws.Cells(2, 2).Value = X

ws.Cells(3, 2).value = Y

ws.Cells(5, 2).Value = Shift
End Sub

8.1.3 Live Image display

Live Image Control LTVideo2.0cx

The live camera display from the Overview
Camera can be implemented into user
applications by using an ActiveX control,
LTVideo2.ocx. See SDK lib directory,
ANSI/Unicode subdirectories.

Note: emScon SDK version 2.4 and higher does
no longer provide ANSI versions of
'LTControl.dll' and 'LTVideo2.ocx'! This means
that the operating systems Win95/98/ME are no
longer supported by emScon 2.4 client software.

Registering LTVideo2.0cx

LTVideo2.ocx is an ActiveX type COM object and
requires registration on the Application
Processor.

From the command line perform the following
command:

Regsvr32 <Path>\LTVideo2.ocx, where <path>
depends on the location of the file — typically
C:\WINNT\ System32.

Remark: 'LTVideo2.ocx' controls up to emScon
Version 2.3.472 failed to register when performed
by a user without administrator privileges.

From emScon (SDK) version 2.3.477 and higher,

367

restricted users also may register these
components. However, be aware that only the
'owner' may then use it. Whenever possible, it is
recommended to have LTVideo2.ocx registered
by an administrator so that all users may use
them without any additional measures.

Limitations:

As mentioned, the controls 'LTControl.dll' and
'LTVideo2.ocx' do no longer require
administrator privileges for registering (From
SDK V 2.4.x). However, developing applications
as restricted users may cause certain problems
when using older development tools (Which is a
limitation of these tools, not a limitation of
emScon components). For example Visual Basic
V6 (and maybe also Office V6- built-in VBA) is
likely to cause problems when referencing COM
objects. (VB 6 for example tries to write
temporary files to the location of registered
components, which often fails for restricted
users).

Hence we have to recommend being
administrator while developing emScon
applications. This does not apply to the users of
those applications, i.e. once finished developing,
they will also run for restricted users.

On the other hand, most recent development
environments, such as VB.NET (2003 and up) and
Office XP should not cause any problems for
restricted users, even not for development tasks.
Moreover, we considered major problems on
using Windows XP SP1 in combination with
restricted users and registration issues. We highly
recommend using Win XP SP2 or Win 2K.

ANSI/Unicode Version
Use the Unicode version for WinN'T/2000/XP.

368

See Version info of LTVideo2.0cx for details,
under File Properties > Version TAB.

Note: emScon SDK version 2.4 and higher does
no longer provide ANSI versions of
'LTControl.dll' and 'LTVideo2.ocx'! This means
that the operating systems Win95/98/ME are no
longer supported by emScon 2.4 client software.

Development Platforms

For Visual Basic or Office, the ActiveX controls
must be added as a reference.

For VC++, a wrapper class is generated using:

Add to Project/Components > Controls > Controls
type library from Visual Studio.

LTVideo2.tlb

LTVideo2.tlb is the related type library delivered
for convenience. LTVideo2.ocx contains all type
information required.

Server Address

LTVideo2.ocx has a property server address,
which must be set according to your server
address.

The port number is 5001. Any changes to the port
number must also be done on the server side.

The size must have a width/height proportion of
4:3. The image must be started/stopped by
invoking the method Start/StopLivelmage.

See Microsoft documentation, for further
information on how to use ActiveX controls in
general.

Events/Methods

The essential methods of the camera OCX are:

e StartLivelmage()

369

e StopLivelmage()

To alter the default frame rate (15/sec), the
following methods are used:

e FrameRateStepUp()
e FrameRateStepDown()

In addition, there is a Method for advanced usage
(details see below upon event description):

o GetCameraParameters()

Moreover, the following events, are defined:

void VideoClick(double deltaHz,
double deltavt,
long posX,
long posyY,
long flags);

This event occurs when clicking on the image
with the mouse. The event parameters are as
follows:

o DeltaHz, deltaVt: The angles that can be
passed to the PositionRelativeHV command, in
order to move the tracker to the clicked position.

o PosX, posY: The pixel values of the clicked
position within the image coordinate system
(top/left =0, 0).

e The flags parameter can be used to figure
out which modifier keys are pressed during the
click. The flags parameter is the same as
provided by the OnLButtonDown standard
message.

See Microsoft MFC documentation, for details.

. Server address and Port number must be
passed as properties.

e AnRGB triplet can be passed to alter the
color of the crosshair

The following event is fired on a
GetCameraParameters method call:

370

void CameraParams(long brightness,
long contrast,
double focallLength,
double horizontalChipSize,
double verticalChipSize,
VARIANT_BOOL mirrorimageHz,
VARIANT_BOOL mirrorimageVt);

This is usually done once upon initialization to
get the actual overview properties. FocalLength,
Chip characteristics and mirror status are for
advanced programming issues (If one wants to
implement it's own 'image click handler’, i.e.
determine relative tracker movement parameters
out of image coordinates).

Important Remark:

Up to LTVideo2.OCX version 2.0.0.13 (part of
emScon 2.0.54 release), it was essential for an
application to call ‘GetCameraParameters’ as part
of the control’s initialization process (i.e. before
calling ‘StartLivelmage’ for the first time).

Since ‘GetCameraParameters’ is an asynchronous
command, calling this command upon
initialization was a somehow struggling task
because the application had to wait for the event
coming back (a synchronization issue, which is
prone to bugs!).

If ‘GetCameraParameters’ was omitted, the
‘deltaHz’ and “deltaVt’ values of the click event
were not correct for certain types of video
cameras.

LTVideo2.OCX versions 2.0.0.15 and higher
(delivered with emScon versions >=2.0.55) do no
longer require calling ‘GetCameraParameters’
explicitly by the application! The application may
call it for informational issues, but in most
applications, ‘GetCameraParameters’ may never
get used.

Attention: emScon 3.0 servers require Version
3.0 of 'LTVideo2.0cx'

Up to emScon 2.4, bitmap format frames were
used for the live video stream. With emScon 3.0,
this has changed to JPEG format. This change

371

requires using 'LTVideo2.ocx' Version 3.0.x (or
higher).

This new version of the control (it comes with
SDK 3.0) is backward compatible to earlier
emScon server versions. That means, it is able to
handle JPEG as well as BITMAP formatted video
frames and will therefore also work with older
emScon servers. Old versions of 'LTVideo2.ocx/,
however, will not be able to display live videos of
emScon 3.0 servers.

Sample 18

This Visual Basic sample demonstrates how to
implement a Live Video image based on the
'LTVideo2.ocx' ActiveX component.

Note that 'LTVideo2.ocx' (part of the emScon
SDK) must be registered first.

If no Visual Basic development environment is
available, the code can easily be ported to VBA
(Excel, or any other MS Office application with
VBA support).

Sample 18 demonstrates the full functionality of
the control, including GetCameraParameters
events and 'Click- handler'.

The code is simple enough to be self- explaining.
Further details see 'Readme.txt' file in Samplel8
folder and code- comments in source files.
Attention: emScon 3.0 servers require version
3.0 of the 'LTVideo2.ocx'. This version of the
control is also compatible to older emScon
servers.

Sample 19

This C++ (MFC) sample demonstrates how to
implement a Live Video image without using the
'LTVideo2.ocx'. It is rather based on emScons
native video APL.

Nevertheless, we do not recommended using

372

this approach for Windows- platform targeted
applications!

For Windows based applications, we highly
recommend rather using the ready to use'
'LTVideo2.ocx' control. 'LTVideo2.ocx' is part of
the SDK and its usage is demonstrated in Sample
18.

However, the current LiveVideo CPP application
might be useful for non- Windows based
applications (e.g. Linux) since support for
LTVideo2.ocx will not be available there.

In this sample, the application directly connects
to the Video Port (# 5001) of the emScon server.
The command interface is based on Ansi text
tokens. The following commands are supported:

"LiveImageStart"
"LiveImageStop"
"FrameRateStepUp"
"FrameRateStepDown"

"RequestCameraParameters”

These tokens can be sent directly to an open
socket connection to port 5001.

Arrival Data includes the following types:
- Live Image Data Blocks (Bitmap format)

Note that each image arrives in two chunks
and must be composed to a complete image
before displaying it.
- Camera Parameter Block
Result of a 'RequestCameraParameters' call.
See source code, function OnReceive(), on
how to parse incoming data.
See source code, function OnPaint(), on how
to display image data.

373

The source code is commented in detail and
should be self- explaining. However, as
already mentioned, using the LiveVideo
TCP/IP interface directly, as shown in this
sample only is recommended for non
Windows client platforms. Rather base
clients on 'LTVideo2.ocx' for Windows
platform targeted application.

Further details see "Readme.txt' file in
Samplel9 folder and code- comments in
source files.

Attention:
New Live Image Format with emScon 3.0 !

Up to emScon 2.4, bitmap format frames were
used for the live video stream. With emScon
3.0, this has changed to JPEG format. Sample 19
thus has undergone an extension since emScon
2.4 SDK was released; it supports now both,
Bitmap and Jpeg formats. Support of bitmaps is
only left for backward compatibility to former
emScon servers.

For Jpeg image conversion and display, a
public-domain Third-Party library has been
used (CxImage by Davide Pizzolato). The
emScon 3.0 SDK just contains a few parts of the
CxImage framework (some include- files and
two libraries for static linking - i.e. only those
parts as far as needed to build our sample). If
interested, you may get the complete CxImage
source from the internet.

8.1.4 Orient To Gravity Procedure

This function is used to measure the tilt of the
tracker's primary z-axis (standing axis) with
respect to the vertical. This can be used to orient
the measurement network to gravity. The tilt is
specified by two angular components about the
tracker's internal x and y-axes.

374

Related Command

¢ CallOrientToGravity

Comments

e This command is only available in
combination with a Leica 'Nivel' inclination
Sensor.

e Executing this command drives the tracker
head to 4 different positions on the xy
plane:

1. Taking 'Nivel' measurement samples.

2. In addition, the station inclination
parameters Ix and Iy are calculated and
returned as result parameters.

e Executing this command does not
'implicitly’ apply any orientation values to
the system.

e In order to 'activate' the station orientation
to gravity, the two result values, Ix and Iy,
must be explicitly set with the command
SetStationOrientationParams (Rotation angles
rotl and rot2).

See Section 9.2 for mathematical
description.

8.1.5 Transformation Procedure

See Section 9.2 for a detailed discussion of the
Transformation issue.

This procedure matches a measured set of points
to a given set of nominal points by using a least
squares, best fit method. The procedure calculates
the 7 parameters (x,y,z, omega, phi, kappa, scale),
which describe the 'transformation filter' to be
applied to the measured points in order to
represent these in the coordinate system defined
by the nominal points.

375

Related Commands
e C(learTransformationNominalPointList
e (learTransformationActualPointList
e AddTransformationNominalPoint
e AddTransformationActualPoint
e SetTransformationInputParams
o GetTransformationInputParams
e (CallTransformation

e GetTransformedPoints

Comments

The command CallTransformation delivers a set of
parameters that can then be applied as a
measurement 'conversion filter' to the emScon
server by using the command
SetTransformationParams.

In other words: CallTransformation is just a
mathematical routine for providing these values;
there is no effect to the measurements delivered
by the emScon per se. Only after applying these
values to the system in a second step (through
using SetTransformationParams), they start acting
as a filter.

Note that you also may get the input values for
SetTransformationParams from a different source
(e.g. your own transformation routine or by some
nominal design). Therefore, CallTransformation is
only a utility routine provided by the emScon
server. In contrast to SetTransformationParams, it
does not belong to the core-functionality of the
system for performing measurements.

Before doing a CallTransformation, both point lists,
Nominal and Actual must be prepared by using
the 'Add..."' commands (use 'Clear...' commands
prior to setup a new list, since existing lists
remain persistent). Both lists must contain the
same number of elements in matching order.

376

The system settings of emScon (units, coordinate
type and coordinate system) must reflect the
current input data. Point input values
(nominal/actual) are interpreted by emScon based
on the current emScon system settings.

e Additional (optional) parameters can be set by
using the SetTransformationlnputParams
command (Mainly used to fix certain result
parameters, for example if scale shall be fixed
to exactly 1.0). By default, i.e. if no call to
SetTransformationlnputParams was ever made,
all result parameters are assumed as
'Unknown' (not fixed). That means that all 7
parameters to be determined are given a low
StdDev of 1e+35, which means a low weight
and therefore means no constraint).

However, since these Parameters - once
explicitly set by using
SetTransformationlnputParams - remain
persistent, it is highly recommend always to
call this command prior to a transformation
calculation. Passing values (0, 0, 0,0, 0, 0, 1) all
with StdDev 1e+35 in practice means to 'clear’

all the input parameter- constraints (i.e. reset to
default).

Example: The following call

SetTransformationlnputParams(

ES TR _AsTransformation,

.o, 3.0, 0.0, 0.0, 0.0, 0.0, 1.0,
le+35, 0.0, 1le+35,

le+35, l1le+35, l1le+35, 0.0)

causes to fix the Y-Coordinate to 3.0 (i.e. a
known, fixed value by design) and the Scale to
1.0 since these parameters are specified with
low StdDev 0.0 (high weight). All the other
parameters theoretically can be given any
value (not necessarily 0.0) since their weight is
low. It is nevertheless recommended to pass 0.0

377

for 'free' result parameters.

When using the COM TP, you may use
predefined symbols 'ES_UnknownStdDevV',
'ES_FixedStdDev' for 1e+35 and 0.0
respectively.

Note that any intermediate value can also be
used for weighting. (Not only 'fix' and 'free’). In
case of a value is known approximately, it is
suggested to use 1.0e+15 (ES_ApproxStdDev).
For further details - especially the meaning of
resultType' (ES_TransResultType) - see section
9.2

After a successful calculation, additional results
in terms of transformed points and residuals
can be retrieved optionally by using
GetTransformedPoints.

Again: None of the 7 calculated transformation
parameters (received as output from
CallTransformation) are automatically applied to
the system. This must be done explicitly by
calling SetTransformationParams.

See Section 9.2 for mathematical description.

8.1.6 Automated Intermediate Compensation

The Intermediate Compensation is a simple and
fast procedure to perform a fully automated
intermediate compensation, where the tracker is

in a fixed installation.

Tracker Geometry

Out of a total of 15 parameters, which affect the
trueness of the tracker geometry, the most
significant changes are affected by these three

parameters:

See emScon manuals, for more information.
Transit axis tilt, i
Mirror tilt, ¢

Vertical index error, j

378

Intermediate Compensation refreshes these three
parameters by taking a small number of Two-face
measurements. If the result is accepted, it updates
only these three parameters and takes over the
rest of the overall 15 parameters from the last Full
Compensation. It is a simpler and faster
procedure than a Full Compensation.

Intermediate vs. Full Compensation

Intermediate Compensations do not replace Full
Compensations. Regular intermediate
compensations extend the interval at which full
compensations need to be carried out.

Setup

A recommended setup is shown below with a
network of fixed targets. Based on a given drive
library the laser tracker measures the target
points automatically and calculates the
Intermediate Compensation results.

; approx. 2m approx. 2m :

e High

Horizontal

L b Low

Two face measurements in the vertical plane

The automated Intermediate Compensation
routine requires that all target locations are fitted
with reflectors (recommended 0.5” Tooling Ball
or Corner Cube), before the routine is started.

Area Required

Make sure that no one walks around the area
during the whole Compensation procedure.
Vibration can affect the measurement and
walking through the beam causes the signal to
break. If a measurement fails, the system

379

automatically repeats the measurement to
achieve a successful measurement, a maximum of
three times.

Procedure

Requirements

The automated Intermediate Compensation can
only be started when the Leica Tracker system is
ready to measure.

For the initial setup it is required that the
locations of the fixed targets are measured
manually. These locations provide the
information for the driver points.

e Six Two Face measurements, in two groups
of 3 each.

e Each group of 3 points is in an approximate
vertical line.

e Minimum distance from the tracker is 2m.

e The high and low measurements should be
more than 30 degrees from the horizontal.

e The groups should have a horizontal angle
separation of about 180 degrees, i.e. all
measurements should lie approximately in
the same vertical plane.

Minimum Measurements

A minimum of 4 measurements is required
(mathematically). More measurements reduce the
influence of errors. In addition, unstable
conditions, such as vibrations and rapid
temperature changes, make it necessary for more
measurements to be taken. The following
combinations are examples:

e EHight measurements in 4 pairs (high and
low) separated by approx. 90 degrees.

e Twelve measurements in 4 groups of 3 each
(high, low, horizontal), separated by

380

approx. 90 degrees.

Related Commands

- ClearDrivePointList
- AddDrivePoint
- CallIntermediateCompensation

- SetCompensation

Comments

Settings

Current emScon system settings, such as units,
coordinate system and coordinate type, are taken
over when emScon interprets point input (driver
point) values. All points in the drive library must
be known within + 2mm (0.0787 in) tolerance,
otherwise this will cause an error in the
measurements.

The settings, such as units, coordinate system and
coordinate system type, must correspond to the
input data. Ensure that the settings describe the
environment of the driver points before they are
uploaded to the server.

One of the first actions of the automated
compensation algorithm is to check the geometry
of the used driver points. If the target setup fits
the requirements (as described above), then the
process continues with the measurements,
otherwise it will abort.

Compensation Results

A successful Intermediate Compensation
procedure returns the following information:

e Total RMS

e Max. Deviation

381

e FError bit filed with the information of
warnings and errors.

Compensation Intervals

An intermediate compensation is recommended
when the maximum deviation is < 0.0012 deg
(13<).

With the command 'SetCompensation’, the newly
calculated compensation can be activated by
passing a zero parameter: SetCompensation(0).

See detailed description of
'ES_C_SetCompensation' (enum
ES_C_Command) about the meaning of paramter
Zero.

8.1.7 Two Face Field-Check

A field check is a control process of the
Compensation parameters. It checks the
condition of the Leica Tracker, with respect to
predefined parameters. It does not, however,
provide for compensatory corrections.

Periodicity

If the tracker is used in a stationary position,
conduct the field check on a weekly basis. If the
field check results show no change, over a period
of six weeks, carry out field checks at least once a
month.

If the tracker has been moved, always carry out a
field check before taking measurements.

Compensations and field checks must be carried
out in normal working conditions, under which
the measurements are taken.

Field check two face Measurement

Two face measurements with 4 to 5 reflector
positions, distributed over the whole object

382

range, will indicate whether the Tracker
compensation is within specifications. To achieve
a 2-sigma accuracy, 95 % of the measurements
must be within the specification.

Client Routine

The Tracker Server Programming Interface does
not have a specific two face measurement mode.
A client routine is required, which can use the
basic functionality provided.

See chapter 'Procedure — Measurement'.

Procedure - Preparation

The procedure requires the following three
setups:

1 Two measurements on a straight line.
2 One measurement set on a vertical line.
3 One measurement plus or minus 90° to the
vertical line.
Measurements on a Straight Line
1. The two measurements must be taken on a
straight line (ray) at the same level as the

as the Tilting mirror of the Tracker. Point
A <0.5 m and Point B within 5-10 m.

1. . i >
A B
<0.5m >5-10 m

Measurements on a Vertical Line

2. All 3 measurements should be taken in a
vertical line.

1. Mid point 0° at Tracker head height.

2. Upper measurement at +40° deg.

383

3. Lower measurement at -40° deg.

During measurements, the Birdbath should not
point in the direction of measurement.

Measurement + 90° to the Vertical Line.

3. Setup the tripod at 90°, as shown in the
graphic below.

The Tracker is setup such that it can turn to the
90° position, without running into stop.

384

Procedure - Measurement

1. Set up the tracker.

2. Set the coordinate system type to spherical
clock wise, SCW,
TPI command: SetCoordinateSystemType.

3. Set the Stationary Measurement Mode.
TPI command: SetMeasurementMode

4. Set the Stationary measurement parameter.
MeasTime to 10000ms
TPI command: SetStationaryModeParams

5. Attach the reflector to the target location.

6. Point the tracker to the target location.
TPI command: e.g. GoPostion. This is only
possible when the coordinates of the point are
known within + 2mm, otherwise track the
reflector manually from the Bird bath.

7. Execute the Stationary Measurement in Face I
and save it.
TPI command: StartMeasurement

8. Execute the command Change Face, which
puts the Laser Tracker from Face I to Face II.
The pointing to a fixed reflector position from
a station should be the same in both faces.
TPI command: ChangeFace

9. Execute the Stationary Measurement in Face II
and save it.
TPI command: StartMeasurement.

10. Execute the command Change face, which
puts the Laser Tracker from Face II to Face I.
TPI command: ChangeFace.

11. Repeat the steps 5 - 10 for all target
locations.

Procedure - Calculation

Devw = vertical angle Face I — vertical angle Face
I

385

Devn = horizontal angle Face I — horizontal angle
Face II

Both measurements are in Face I representation.
Face Il measurements are represented in Face I.

Example

Devvt = 90.7289893— 90.7287338 = 0.0003 Deg
Devh =269.9877001- 269.9879985 = -0.0003 Deg

Tolerances

The recommended tolerances of the deviations
are:

Vertical angle = +13cc (0.0012 Deg)
Horizontal angle = +13cc (0.0012 Deg)

When the tolerance is exceeded, an Intermediate
Compensation is recommended.

386

O Mathematics

9.1 Point accuracy

Throughout Emscon point coordinates are stored
together with a 3x3 covariance matrix. It is a
symmetric 3x3 matrix with the squares of the
respective standard deviations on the diagonal:

stdDev,> covar, covar,
covar, stdDev,” covar,,
2

covar, covar, stdDev,

The error ellipsoid of the point is defined by the
eigenvectors and eigenvalues of the covariance
matrix. If the covariance matrix is diagonal, the
axes of the error ellipsoid are parallel to the
coordinate axes. The correlations
B covar,

stdDev; *stdDev

P

satisfy the relations
-1< ot <1)

At the TPI point coordinates together with the
covariance matrix are passed in the following
non-redundant form:

Coord1,Coord2,Coord3,

StdDevl, StdDev2, StdDev3,
Covarl2,Covarl3,Covar23.

9.1.1 A priori accuracy

For continuous measurements, the a priori
covariance matrix of a point measurement is
calculated according to the tracker accuracy.
Emscon adapts the following model:

387

StdDevH = max(1.25E-5/d, 5E-6)
StdDevV = max(1.25E-5/d, 5E-6)

StdDevD = /1E-10 + (1.25E-6 - d)’

where d denotes the measured distance in meters.
H and V denotes the horizontal and vertical angle
in radians. This formula applies in the case of
IFM measurements initialized at bird bath
distance. The angle accuracy is constant beyond
2.5m and slightly poorer at close range.
Simplified homogeneous models are

StdDevXYZ = max(10E-6-d, 25) or even simpler
StdDevXYZ =504 . The a priori accuracy includes
unresolved systematic errors and indicates the
reliability of a measurement. This kind of
accuracy should be used as input to any further
calculation.

9.1.2 A posteriori accuracy

For single point measurements (stationary,
sphere center, circle center) also the a posteriori or
repeatability covariance is calculated from the
actual statistical variation of the many shots. It
gives an indication on the stability of the
measurement environment disregarding
systematic effects. We recommend not using this
accuracy for any other purpose.

9.1.3 Transformation of covariance matrices

In the (spherical) tracker coordinate system the a
priori covariance matrix of a tracker
measurement is diagonal (see formulas above).
Conversion to Cartesian coordinates results in a
full matrix. Transformation to other coordinate
systems using orientation and/or transformation
parameters (Section 9.2 below) again transforms
the covariance matrix. However, at any stage the
standard deviations, i.e. the square roots of the
diagonal entries provide a reasonable estimate on
the accuracy of the respective coordinate triple.

388

9.2 Orientation and Transformation

The orientation takes the instrument coordinate
system to the world coordinate system and the
transformation takes the world coordinate system
to an object coordinate system. The two are used
either by them selves or together to show
coordinates in the required coordinate system.

See Section 8.1.5 for a survey on the TPI
commands used to calculate orientation or
transformation parameters. The major input to
these calculations are the coordinates of a set of
reference points together with the corresponding
measured coordinates. The result of the
calculation is a seven parameter transformation
of the measured points onto the reference points.

9.2.1 Orientation

Orientation refers to the alignment of a tracker
with respect to a world coordinate system (WCS).
The world coordinate system may be defined by
the principal measurement station (Fig. 1) or by a
CAD model (Fig. 2). The coordinates of a point
with respect to the principal station or CAD
model respectively are called nominal or reference
coordinates. The coordinates as measured by the
active station are called actual coordinates.

QOrientation

z
) Y
C'tua!
Z N

Y \(\0
<
X

wCs

Active station

Principal station

Fig. 1

389

Setting the calculated parameters as orientation
parameters with the
SetStationOrientationParams command
and re-measurement of the reference points
yields actual coordinates approximately equal to
the nominal coordinates.

QOrientation Y

Active station X

Y*é

Y4
x 1
Fig. 2

9.2.2 Transformation

A transformation defines a local object coordinate
system. In this case the object coordinates play the
role of nominals. (Fig. 3). Activating the
calculated transformation parameters and re-
measurement yields actual coordinates
approximately equal to the nominal coordinates.

Z
Y Object coordinate system
Y
WCS X +
NP
T
]] Transformation
Active station
Fig 3

390

9.2.3 Nominal and actual coordinates

The role of nominal, actual, and world
coordinates in the orientation and transformation
calculation are summarized in Table 1.

Nominal/reference | Actual World

Orientation CAD coordinates | Measured | Nominal
w.r.t. CAD by active

station
Orientation Measured by 1< Measured | Nominal
w.r.t. 1st station | station by active

station
Transformation | Object coordinates | Measured | Actual

by active

station

Table 1
9.2.4 Orientation parameters

Orientation and transformation are both seven
parameter transformations consisting of three
translation, three rotation, and one scale
parameter. They describe a mapping of a given
set of actual points onto a given set of reference
points. The mapping is calculated such as to
minimize the deviation between the transformed
points and the corresponding reference points in a
least squares sense. Typically the scale is close to
one, e.g. when describing a temperature
dependent dilation. In the orientation case the
map assumes the form:

T(X)=t+Rx/s
with
t = 3D translation vector

R = 3x3 rotation matrix
s =scale

The corresponding residuals are:

residual =T (actual) —nominal

The map T can be interpreted as a coordinate
system with its origin at t and the axes given by
the columns of R. In terms of the rotation angles

391

xAngle, yAngle, zAngle the rotation matrix
assumes the form
cz-cy -Sz-cy sy
R=|SZ-CX+CZ-Sy-SX CZ-CX-SZ-SY-SX -CY-SX
SZ-SX-CZ-SY-CX CZ-SX+SZ-Sy-CX CY-CX

where

cx = cos(xAngle)

sx =sin(xAngle)
and similarly for the other angles.
9.2.5 Transformation parameters

Transformation and orientation equations are the

inverse form to each other as mappings. For

transformations the map assumes the form:
T(X)=sR*(x-t).

9.2.6 Input to transformation computation

Orientation or transformation

In the orientation/transformation procedure the
first parameter of the
SetTransformationlnputParams command
is chosen as ES_TR_AsOrientation/
ES_TR_AsTransformation respectively.

Nominal points

Nominal points are added as in the following

example:

AddNominalPoint(1.0, 2.0, 3.0, ES_FixedStdDev, ES_UnknownStdDev,
ES_ApproxStdDev, 0.0, 0.0, 0.0);

The parameters are the three coordinates together
with their standard deviations and covariances
(see Section 9.1 above). We recommend using the
following predefined standard deviations (see
also Section 3.3.1):

Coordinate Symbol Value
accuracy

Fixed (exactly ES_FixedStdDev 0.0

known)

Unknown (free) |ES_UnknownStdDev | 1.0E35

Approximately ES_ApproxStdDev |1.0E15

known
(reasonable)

392

Coordinate Symbol Value
accuracy

Weighted > 0.0,
< 1.0E10

Approximately known coordinates are used to
calculate an initial approximation of the
orientation or transformation parameters. In a
minimum configuration, the solution would be
ambiguous without this additional information.

Actual points

Actual points are added in the following form:

AddActualPoint(-12.487, -5.79687, 5.49683, 0.0001, 0.0001,
0.0001, 0.0, 0.0, 0.0);

The number and order of actual points must
agree with that of the corresponding set of
nominal points. Typically, actual points are
obtained from single point measurements. We
recommend using the a priori accuracy (Section
9.1.1) in particular when using fixed nominal
values. Using fixed nominals together with the a
posteriori accuracy provided by tracker
measurements would lead to over weighting of
residuals in laser direction. The reason is that
tracker measurements are much more accurate in
the laser direction than perpendicular to it.

Parameter constraints

If any of the seven orientation or transformation
parameters are known prior to the calculation,
their value can be fixed. Frequently the scale is
fixed to be 1.0 and the other parameters are free
as in the following example:

SetlnputParams(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0,
ES_UnknownStdDev, ES_UnknownStdDev, ES_UnknownStdDev,

ES_UnknownStdDev, ES_UnknownStdDev, ES_UnknownStdDev,
ES_FixedStdDev);

The values of unknown parameters can be set
arbitrarily. Parameter constraints are not used to
reduce the required number of known nominal
coordinates. They are not taken into account for
the initial approximation. To fix some or all
components of the translation vector the

393

coordinate type must be one of Cartesian RHR or
LHR.

9.2.7 Output of transformation computation
Transformation parameters

The command Cal ITransformation returns a
structure Cal ITransformationRT containing
the seven parameters of the transformation
(translation, rotation angles, scale) together with
their standard deviations. The standard deviation
of a fixed parameter is zero.

Transformed points and residuals

The command GetTransformedPoint returns

a list of structures, each containing a transformed
point together with its covariance matrix and the
three coordinates of the residual vector

residual = nominal —transformed

The covariance matrix of the transformed point
takes into account the covariance matrix of the
actual point and the 7 by 7 covariance matrix of
the transformation calculated. The covariance
matrix of the residual is obtained by adding those
of the nominal and the transformed point.
Statistics

The command Cal ITransformation also
returns the

e RMS of residuals
¢ Maximum deviation

e Variance factor
RMS of residuals

The RMS of residuals is defined as
i|re3idual|i2

i=1
noEquations

RMS =

where the number of equations is the number of
fixed or weighted nominal coordinates.

394

Maximum deviation
The maximum deviation is defined as

maxDev = max,_, , |residual|

where fixed and weighted nominal coordinates
are taken into account.

Weighted residual square sum

The transformation algorithm determines the
values of the transformation parameters in the
weighted least squares sense. This means that the
following target functional is minimized:

RSS = z residual,” weightMatrix, residual,
i=1

This functional is called the weighted residual
square sum. The weight matrix is the inverse of the
covariance matrix of the residual. For constraints
the residual and the weight matrix are scalars.

Variance factor

The variance factor (Axyz: mean error) is related to
the residual square sum through:

RSS

varianceFactor = ——
redundancy

It is dimensionless, i.e. it does not depend on the
length or angle units. Its value may vary
considerably depending on the accuracy of the
input and the model error, i.e. the size of the
residuals. If the residuals are systematically
bigger than the standard deviations of the actual
coordinates, the variance factor exceeds one.
Otherwise, it is less than one.

Redundancy

The redundancy is an integer defined as

redundancy = noEquations —noParameters

If the redundancy is zero the variance factor is
undefined. Such cases are called minimum
configurations. If the redundancy is negative, the
solution is non-unique. More fixed nominal

395

coordinates or parameter constraints are needed
to determine a unique solution.

9.2.8 Examples

Standard case with 3 points

AddNominalPoint(1, 2, 3, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(2, 3, 4, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(0, -4, 2, Fixed, Fixed, Fixed, 0, 0, 0);
SetlnputParams(0, 0, 0, 0, 0, 0, 1, Unknown, Unknown, Unknown,
Unknown, Unknown, Unknown, Unknown);

In this example

redundancy = 3-noPoints—7=2.

Pure dilation

AddNominalPoint(1, 1, O, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(-1, 1, O, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(1, -1, O, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(-1, -1, O, Fixed, Fixed, Fixed, 0, 0, 0);

AddActualPoint(1.12, 1.1, 0, 0.001, 0.001, 0.001, O, 0, 0);

AddActualPoint(-1.1, 1.1, 0, 0.001, 0.001, 0.001, O, O, 0);
AddActualPoint(1.12, -1.1, 0, 0.001, 0.001, 0.001, O, 0, 0);
AddActualPoint(-1.1, -1.1, 0, 0.001, 0.001, 0.001, O, O, 0O);

SetlnputParams(0, 0, 0, 0, 0, 0, 1, Unknown, Unknown, Unknown,
Unknown, Unknown, Unknown, Fixed);

In this example the desired transformation is the
identity with parameters 0, 0,0, 0, 0, 0, 1. The
length of all residuals is 0.132 . Their covariance

matrix is
10° 0 0
covar=| 0 10° 0O
0 0 10°

The weight matrix is

10° 0 0
weight=| 0 10° 0
0 0 10°

Thus

RSS = 4 * 10° * (0.1\/5)2 — 80000
redundancy =12-6=6

varianceFactor = &;OO =13333.

Weighting

To illustrate the influence of nominal or actual
standard deviations consider the following
example.

396

AddNominalPoint(1.1, 1, 0, 0.002, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(1.1, -1, 0, 0.002, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(-1.1, 1, 0, 0.001, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(-1.1, -1, 0, 0.001, Fixed, Fixed, 0, 0, 0);
AddActualPoint(1, 1, 0, 1.0E-35, 1.0E-35, 1.0E-35, 0, 0, 0);
AddActualPoint(1, -1, 0, 1.0E-35, 1.0E-35, 1.0E-35, 0, 0, 0);
AddActualPoint(-1, 1, 0, 1.0E-35, 1.0E-35, 1.0E-35, 0, 0, 0);
AddActualPoint(-1, -1, 0, 1.0E-35, 1.0E-35, 1.0E-35, 0, 0, 0);

The resulting orientation has translation (-0.06, 0,
0) and no rotation. The residual vectors are (-0.16,
0, 0), (-0.16, 0, 0), (0.04, 0, 0), (0.04, 0, 0). The
weighted residuals (divide by square of standard
deviation) have equal length 40000.

3-2-1 Alignment

AddNominalPoint(1, 2, 3, Fixed, Fixed, Approx, 0, 0, 0);
AddNominalPoint(2, 3, 4, Fixed, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(0, -4, 2, Approx, Fixed, Approx, 0, 0, 0);

SetlnputParams(0, 0, 0, 0, 0, 0, 1, Unknown, Unknown, Unknown,
Unknown, Unknown, Unknown, Fixed);

This is a minimum configuration since

redundancy =2+3+1-6=0.

The approximate coordinates are necessary to
select a unique solution from the eight possible
solutions. This fact can be easily observed in the
following example:

AddNominalPoint(0, 0, O, Fixed, Fixed, Fixed, 0, 0, 0);

AddNominalPoint(1, O, 0, Unknown, Fixed, Fixed, 0, 0, 0);
AddNominalPoint(1, 1, 0, Unknown, Unknown, Fixed, 0, 0, 0);

Here each of the rotation angles can be 0 or . The
scale must be fixed in 3-2-1 situations.

Box corner

The corner of a box is defined by three mutually
perpendicular planes. In the subsequent example
each plane contains two measured points. Only
the nominal coordinate defining the plane is
exactly known.

AddNominalPoint(0, 1, 1, Fixed, Approx, Approx, 0, 0, 0);
AddNominalPoint(0, 2, 2, Fixed, Approx, Approx, 0, 0, 0);
AddNominalPoint(1, O, 1, Approx, Fixed, Approx, 0, 0, 0);
AddNominalPoint(1, O, 2, Approx, Fixed, Approx, 0, 0, 0);
AddNominalPoint(1, 1, O, Approx, Approx, Fixed, 0, 0, 0);
AddNominalPoint(2, 2, 0, Approx, Approx, Fixed, 0, 0, 0);

Again, this is a minimum configuration provided
the scale is fixed.

Orientation using Nivel measurement

Suppose the horizontal angles xAngle and
yAngle have been obtained from a 'Nivel'
measurement. To complete the orientation of the

397

station use a number of reference points together
with:

SetlnputParams(0, 0, 0, xAngle, yAngle, 0, 1, Unknown, Unknown,
Unknown, Fixed, Fixed, Unknown, Fixed);

9.3 T-Probe

The coordinate system of the T-Probe is defined
as in Figure 1 with the z-axis pointing roughly
towards the camera and the y-axis opposite to
mount 1. Thus the y coordinate of a tip vector at
mount 1 is negative.

Figure 1

The tip position and probe orientation is returned
with respect to the user coordinate system
(transformation parameters). The probe orientation
is described by the rotation angles (xAngle,
yAngle, zAngle) or the quaternion (q0, q1, g2, g3).
In terms of rotation angles the rotation matrix R is
defined as in Section 9.2.4 . In terms of the
quaternion it is given by

398

Rxx=00-q0+ql-9l1-g2-92-93-93
Rxy=2(q1-92-00-q3)
Rxz=2(g1-q3+q0-qg2)
Ryx=2(q1-q2+q0-q3)
Ryy=q0-90-g1-q1+92-92-93-q3
Ryz=2(q2-93-90-ql)
Rzx=2(g1-qg3-90-q2)
Rzy=2(g3-g2+q0-ql)
Rzz=q0*q0-g1*ql-q2*g2+g3*q3

This matrix is used to transform directions from
the probe coordinate system to the user system
through:

directionUser = R *directionProbe.

EmScon 3.0 TPl Programmers Manual
Revision: May 26, 2008

399

10 Appendices

10.1 Tracker Trigger Interface [A]

Appendix A: A detailed description of Trigger- issues of the
Tracker / emScon.

10.2 Server Error Numbers [B]

Appendix B: This listing comprises the error numbers (and
partly symbols) an emScon programmer may encounter for
the 'ResultStatus' of TPI commands and/or TPI Error Events.
It is meant as a Summary / Quick- Reference for information
already documented in the main sections of the manual (but
spread among several chapters). This listing applies to TPI
errors that originate on the emScon server (i.e. not on
Controller/Tracker Firmware)

10.3 Tracker / TP Error Numbers [C]

Appendix C: This listing comprises the error numbers an
emScon programmer may encounter for the 'ResultStatus' of
TPI commands and/or TPI Error Events. The errors listed
here originate at the Tracker or Tracker- Processor. (In
contrast to those listed in Appendix B, which originate on the
emScon server). Thus Appendix C extends the listing of
Appendix B.

10.4 T-Cam / T-Probe Error Numbers [D]

Appendix D: This listing continues and extends the list of
Appendix C. While the list under Appendix C was related to
Tracker/TP hardware only, this list covers 'Extension-
Hardware', such as T-Cam and T-Probe.

400

10.5 AIFM Error Numbers [E]

Appendix E: This listing continues and extends the list of
Appendix C. It contains new error numbers specific to
emScon 3.0. These numbers are related to the new AIFM
(Absolute Interferometer) hardware of AT- Tracker series.

401

Leica Geosystems AG Metrology Division

Tracker Trigger Interface

1. Introduction

The LT CONTROLLER plus and base as well as the AT Controller 900 provides a trigger input
interface to enable external triggering and synchronization of the tracker measurement.

With emScon version 2.3 or higher the trigger interface of the Laser Tracker gets a feature
enrichment. There are now two major categories of external trigger modes:

» Realtime Triggers -> take measurements triggered by an external clock signal

« Event Message Triggers -> do not really measure, they only use the same hardware
Interface. It will send an event message to the application.
It's up to the application software then to take any action
(e.g. start a stationary measurement).

The hardware trigger interface of the LT Controller allows a flexible setup. The interface can be
configured to:

« Differential RS422 or single wired TTL input signal (defined by a jumper on the connector).
« Single event or continual clock trigger mode
< Trigger event on negative or positive transition of the clock signal

* A minimal time delay between measurements

Trigger Interface Feb. 4, 2008 Page - 1

Leica Geosystems AG Metrology Division

2. Hardware Interface

The trigger input connector can be found on the rear side of the LT Controller plus or base.
Currently the trigger card in the LT Controller supports only a trigger input interface.

The trigger interface contains 2 input signals:

¢ Clock input
« Start / Stop signal input

* An additional line selects between TTL or RS422 interface

To prevent any difficulties with ground loops all inputs are optically isolated to the rest of the
Controller electronics.

2.1 Trigger Input Connector

The picture shows the pins of the 15pin female high density DSUB connector
(view from solder side).

TriggerGND
W@C rigger
5 O 15
O 2 O7— TTL/RS422 Select Only pin 10...15 are used for the
é 8 }4}# /Start_Stop external trigger interface.
3 013 | The remaining pins 1...9 are
2 & 1%# Start_Stop reserved for future use and should
O g Of“— [Trigger Clock not be connected.
1 011 |
O O+ Trigger Clock

"

Trigger Interface Feb. 4, 2008 Page - 2

Leica Geosystems AG Metrology Division

2.2 Differential RS422 Signal Input

The drawing shows a principal interface circuit of the LT Controller trigger interface configured
for balanced RS422 input signals.

—l
| T T T T T T +5V Isolated input circuit LT contrO"er
| User System ‘ +5V DC
balanced RS422 outputs | _ 10k ¢ bC
} \ AP Interface switch R$422/TTL J:
\
\ | GND "
\ + | I
]
| | Clock L D
| ‘ (.
| /Clock [
l T
\ | Lo
|
| | L
| ‘ Lo %7 .
| Start_Stop [A R < Start_Stop
\ i
I
} | /Start Stop L[@120 8488
i
| ‘L ”””””” - imﬂ
777777777 L

The Start/Stop inputs can be left unconnected in cases were only the clock signal is used for
event triggering.

For improved noise immunity in an industrial environment the use of differential signals
is strongly recommended.

2.3 Single wired TTL Signal Input

The drawing shows a principal interface circuit of LT Controller trigger interface using
unbalanced TTL signals. With pin 15 tied to GND the interface switches for TTL inputs.

—
- *‘ +5V Isolated input circuit LT contro"er
‘ User System +5V DC
| unbalanced TTL outputs ‘ 10k < DC
‘ \ OV = TTL (e Interface switch RS422/TTL J:
| 1 GND ~ r 10 +5V
| < ‘ I 1l
[
| | N a $J:D
| Clock | Clock I 11
‘ i L
12
\ | ! 1 - +5V
| | - A
[
| . ‘ Lo @ %7 %Z:]: D— Start_Stop
| . | Start_Stop P AL L
| ‘ o L
| A ¥ -
fffffffff \
[

The Start/Stop input can be left unconnected in cases were only the clock signal is used for
event triggering.

For improved noise immunity in an industrial environment the use of differential RS422
signals is strongly recommended as shown above §2.2.

Trigger Interface Feb. 4, 2008 Page - 3

Leica Geosystems AG Metrology Division

3. Trigger Modes

There are tree major categories of trigger modes:
e Internal -> takes measurements based on internal settings without any
external conditions.
» Realtime Triggers -> take measurements triggered by external signals.
» Event Message Triggers -> do not really measure, they just send an event message to the
application. It's up to the application software then to take any
action (e.g. start a stationary measurement).

Internal External Realtime Triggers Event Message Triggers
Trigger

Event Trigger Internal Clock External Event Message
bases on external With external Th tive t issi f

_ Start/Stop e active transmission o
measurement trigger clock. Each the Start/Stop signal sends
bases on active clock Measurement an event message. #=]
internal transmission takes e
i a measurement.
settings external Start/Stop
signal, bases on Start/Stop Event

internal settings. Message

The start and the stop
transmission of the
Start/Stop signal sends an

event message. =7

Ext. Clock with
Start/Stop

bases on external trigger
clock. Measurement
controlled by external
Start/Stop signal.

3.1 Realtime Trigger Modes:

« External Clock with Start/Stop signal
The measurement will be controlled by a start/stop signal on the trigger board. One transition
of the clock signal (positive or negative depends on the configuration) triggers a
measurement if the start/stop signal is active.

Clock Input u +_| +: % tJ
(negative transission) \
‘ \
¢ |
ol | /’
Start_Step Input ®, B

(low active) S T

{/

I

|

‘r ’ / /

L / /
(o]
P) P

:y;;;;,

Pt %

”jy;_;;

| \

-
|~

triggered measurements

* Realtime Event Trigger
In the event trigger mode each positive or negative transition (depending on the
configuration) of the clock signal will take a measurement. In event trigger mode the
start/Stop signal will be ignored.

« Internal clock with external start/stop signal
The measurement will be controlled by the external Start/Stop signal on the trigger board.
The continuous measurement then will be taken regarding internal settings and is not
synchronized to an external signal.

Trigger Interface Feb. 4, 2008 Page - 4

Leica Geosystems AG Metrology Division

3.2 Event Message Trigger Modes:

They do not start a measurement, just the hardware interface of the trigger card is used to receive
the events. Since the idea of Event Message Triggers are single incidents they will send up to
maximal 3 messages per second. Faster incidents will be simply ignored, realtime triggers are the
better choice therefore.

« Event Trigger
The positive or negative transition (depending on the configuration) of the Start/Stop signal

will send a trigger event message. It does not start a measurement. It's up to the application
software to take any action like starting a stationary measurement etc.

» Start/Stop Event Trigger
The both transition of the Start/Stop signal will send depending on the configuration a start or
a stop event message. It does not start a measurement. It's up to the application software to
take any action.

3.3 Configuration of the Trigger Input Signals:

» Clock Signal
The clock signal can be configured to work either with the positive or the negative clock

transmission. Default is negative transmission.

» Start/Stop Signal
The start/stop signal can be either low or high active (low active means low = start condition).
Default is low active.

¢ Minimal Delay Time
While using a realtime trigger mode based on external clock the maximal data rate (minimal
delay between 2 points) can be defined.

Minimal Time Delay Minimal Time Delay Minimal Time Delay
Clock Input /t‘ /|-| /t‘ | |

| : : :

| | 'Z \ |

‘ / Time. \ e T|me \ ‘
triggered \\@Iat@g /s (Status \!l;qlatlcirl J | Saus = N
measurements = o seb

Trigger clocks that violate the minimal time delay are ignored and do not trigger a
measurement. The time violation flag will be set in the status of the next delivered
measurement point.

Trigger Interface Feb. 4, 2008 Page - 5

Leica Geosystems AG Metrology Division

4. Time Information

4.1 Timestamp and Clock Drift

A timestamp is supplied with each measurement from tracker. The time bases on the internal
clock of the tracker controller with microsecond resolution.

As it lies in the nature of subject internal clocks of several computers may slightly differ. Even
when initially set accurately, real clocks will differ after some amount of time due to drift, caused
by clocks counting time at slightly different rates.

The tracker controller captures the trigger event (point of interest) in its own time system. Then
a measurement is interpolated to exactely that point. The timestamp captured with the trigger
event will be sent together with the measurement.

The time of the first measurement after the measurement start command or a the external start
signal will always be set to 0.

User Time 0 1 2

4 5 6 7 8 Time
System -t I - I >
Event time measured in user system ='1.32 465 16.31 17,97
| | | |
Trigger Signal
gger Sig » _ /+_| /+_| /+_|
[T [[
‘ Points of [[[
| Interrest | . U .
triggered \ \ \ \ \
measurements
________ T i Ly Sy I S
Tracker Time 0 1 2 3 4 5 .6 7 8 Time
System
4120 2.70 422 572 «—p B
Event time measured in tracker time system Time Drift between

the clock systems

The drawing above shows the effect of the drift between the 2 time systems. The measurement
is taken in the exact point of interest but the time measured in the tracker may differ from a
reference time taken externally.

A drift of 10-20 microseconds per second is not unusual. (As an example: 10microsec/second
is equal to a drift of about 1 second in a day).

4.2 Time and Trigger Accuracy

The internal clock bases on a cristall osillator with an overall stability of #100ppm, including
temperature changes within operating range, shock and vibration, aging of 1.year, etc.

Catching a measurement with an external trigger signal has an accuracy of ¥5usec, including
acquisition of the trigger signal and several components of a measurement.

Trigger Interface Feb. 4, 2008 Page - 6

Leica Geosystems AG Metrology Division

5. Generation of triggered Measurement Results

The external trigger signal does not directely influence the raw measureing process in the
tracker. While the angle and distance reading runs at a fix rate of 3kHz the T-Cam and probe
devices capture rotation measurements with 100Hz. Each measurement component is
captured together with a timestamp based on the internal tracker clock running at 1MHz (gives
a resolution of 1 ysec).

In the same way the timestamps of events from external trigger are captured. With the
knowledge of the time of all occurances it is possible to interpolate a measurement to the exact
point of interest without a time lag.

Tracker Position H
measurements (3kHz) i i

Probe Strobes
(100Hz)

'
4
Probe Rotation i
measurements @
o

Interpolated Position

In\'lterpolated Rotatiq

Trigger Input t I t I Y
Triggered and ‘ :
interpolated

measurements

v

The drawing shows the way as 6D Probe measurements are captured and interpolated. For 3D
it works the same way but using only the tracker position measurement

Trigger Interface Feb. 4, 2008 Page - 7

Leica Geosystems AG Metrology Division

6. External Triggers on the Tracker Controller Status Display
The 3. line of the LCD display shows the status and operation of the tracker .

6.1 Tracking and Measurements:

: IF: 1%2.1e2.8.1
Just tracking no
- LT1 LTOada L5 18 — <
M -~
casurements sent T PTrackine X gIFH i -n /

o -

_ =77 Refl
Status shown in 3. line: —=
= ¢ (empty) interferometer not locked
o DMmeas ADM measurement in progress
= IFM on interferometer locked, tracker ready to measure
Measurements based erScon 2. 3. 353
on internal Cloc LTL LTDE48 US. 16
_ b measil x L= 18ms
- Fetl
.
« meazil Y T=1lmz 3D measurement with a rate of 1000 points/sec, delay of 1ms
» mbizr3l ¢ IFMon only 3D reflector display data running but not a measurement
o peascl Y L=Dms 6D measurement with a rate of 200 points/sec, delay of 5ms
« mbizrel 3¢ IFMon only 6D reflector display data running but not a measurement

6.2 External Realtime Trigger:

trigger mode set IF: 192, 1ed.8.1
to external trigger LTi LT[:I G L .,..m
measil 3¢ ExtTr 153'(/)
o7 Refl
” - /
= External Trigger Mode with Start/Stop ,I
Display swapping between Trigger Status
#xLTri® and minimal time - Start/Stop line inactive (stop condition)
delay of e.g. L»=T3mz - [0 start/Stop line active, waiting for trigger events
- A Trigger activity, events take measurements
- x Time violation, pulses faster then then
minimal delay
= External Trigger, Event Mode
Display swapping between Trigger Status
#x1Tr1i2 and minimal time - E Tracker ready, waiting for trigger events
delay of e.g. L=z - W Trigger activity, events take measurements
- x Time violation, pulses faster then the minimal
delay

Trigger Interface Feb. 4, 2008 Page - 8

Leica Geosystems AG Metrology Division

6.3 External Start/Stop Trigger:

= External Start/Stop Trigger, measurements based on internal clock
Display swapping between
ext5Larl. and measurement Trigger Status
time delay of e.g. Li=lms - - Start/Stop line inactive (stop condition)
"l Measurements taken based on
internal clock

6.4 Message Event Triggers:

Since message event triggers do not take measurements they only send an event message
to the client. Therefore the trigger status is displayed on the 2. line and not on the operation
line in the LCD display.

IF: 1292.1e2.8.1 _ —

LT1 LTOEde L 180 T2

Trackine x 1 FH\/ a
Fefl
7
/
= Event Message Trigger, Event Mode /
Display in 2. line shows Trigger Status
Tie (T: stay for trigger) - & Tracker ready, waiting for an trigger event

- WM Trigger activity, event message sent

= Event Message Trigger, Start/Stop Mode
Display in 2. line shows

T: and the start/stop Trigger Status . . .
line status - - Start/Stop line inactive (stop condition)

- [] Start/Stop line active

Trigger Interface Feb. 4, 2008 Page - 9

Appendix B

EMSCON SERVER ERROR NUMBERS

This appendix describes error numbers (plus some warnings) that originate on the emScon server.
These numbers are returned as status values for failed TPl command calls (except zero- values and

documented warnings, which apply to successful calls).

The listing below is presented in a Quick- Reference style. For additional information see the chapter
'ES_ResultStatus' in the section of the manual where 'enum'’ values are described (while the formal
definition - including symbolic names for use in applications - can be found in the 'ES_C_API_Def.h'
include file). Note that symbols are available only for those errors defined as enum values (i.e. those
with prefix ES_RS), since only these are publicly defined in the API include file.

Most of these errors are shared among multiple commands. As an example, the error
'ES_RS_ServerBusy' may appear with virtually every command, while 'ES_RS_WrongParameter' may
occur with every command that takes any input parameters. Some errors, however, may even be
unigue to a specific single command.
Furthermore, error groups specific to certain special commands (those executed as sub-processes by
the server), such as 'CallTransformation' or 'CallOrientToGravity' exist. These errors typically are in a
range between 20000 and 29999. Their (internal) symbols are not available to application

programmers (although partly listed in the sections below).

Finally, errors in the range between 1000 and 9999 originate on the controller/hardware. They are
listed in appendices C and D (i.e. not in this appendix). Only numbers; no symbols exist for these at

all.

B1l: TPI status values defined in enum 'ES_ResultStatus’

Symbol Comments
Number | (without 'ES_RS ' prefix) (as far as symbol not self-explaining)
Default status in case of command
0 | AllIOK succeeded
Previously issued command still
1 | ServerBusy pending; Retry later!
Command not implemented (server
2 | Notlmplemented version not up to date?)
Any of the provided parameters is
3 | WrongParameter invalid
4 | WrongParameterl First parameter is invalid (error)
5 | WrongParameter2 2nd parameter is invalid (error)
6 | WrongParameter3
7 | WrongParameter4
8 | WrongParameter5
9 | WrongParameter6
10 | WrongParameter7
Warning: First parameter is out of
recommended range (but still accepted,
11 | Parameter1OutOfRangeOK command succeeded)
Error: First parameter is out of range
12 | ParameterlOutOfRangeNOK (not accepted, command failed)
Warning: 2nd parameter is out of
recommended range (but still accepted,
13 | Parameter20utOfRangeOK command succeeded)
Error: 2nd parameter is out of range
14 | Parameter20utOfRangeNOK (not accepted)
15 | Parameter30OutOfRangeOK
16 | Parameter30utOfRangeNOK

17 | Parameter40OutOfRangeOK
18 | Parameter40OutOfRangeNOK
19 | Parameter50utOfRangeOK
20 | Parameter50utOfRangeNOK
21 | Parameter60utOfRangeOK
22 | Parameter60QutOfRangeNOK
Current Reflector type is not suitable in
23 | WrongCurrentReflector current context
Applies to Circle Center measurement
modes only. Failed to calculate the
center (usually bad or not enough
24 | NoCircleCenterFound measurements)
Applies to Sphere Center measurement
modes only. Failed to calculate the
center (usually bad or not enough
25 | NoSphereCenterFound measurements)
Tracker Processor (Controller) not
26 | NoTPFound detected. Missing cable?
Tried to query meteo data from (missing
27 | NoWeathermonitorFound or disabled) external meteo device
Applies to command
'‘GoLastMeasuredPoint' only. No point
has been measured yet since last
28 | NoLastMeasuredPoint system start.
Tried to access Video functionality, but
29 | NoVideoCamera there is no overview video camera
Tried to access ADM functionality, but
30 | NoAdm tracker is not equipped with an ADM
Tried to access Level functionality,
while no inclination sensor (Nivel) is
31 | NoNivel attached/enabled
Current firmware is not suitable for
32 | WrongTPFirmware actual tracker/controller
Fatal installation problem on emScon
server (SQL server not running or no
33 | DataBaseNotFound DB attached)
34 | LicenseExpired The copy-protection Dongle has expired
The issued command does not make
35 | UsageConflict sense in current context
An unknown / not specified error has
36 | Unknown occurred
Tried to measure HVD while IFM
distance not set - use 'GoBirdBath' or
37 | NoDistanceSet '‘GoPosition'/'FindReflector'
Tracker not recognized (cable
38 | NoTrackerConnected connection problem?)
Any command that throws this error
requires the tracker being initialized
39 | TrackerNotlnitialized first. Issue 'Initialize' command first.
Applies to a child-process:
Transformation, OrientToGravity...
Should normally not happen (hanging
40 | ModuleNotStarted process?) System may require a reboot
Applies to a child-process: No response
41 | ModuleTimedOut within reasonable time
Fatal database failure (database file
42 | ErrorReadingModuleDb corrupt?)
43 | ErrorWritingModuleDb Fatal database failure (disk full?)
Video Camera cannot deliver image
44 | NotInCameraPosition due wrong (mirror) position - use

'ActivateCameraView'

Controller has service firmware loaded -

45 | TPHasServiceFirmware system needs reboot
Controller is under external control,
issued command currently not

46 | TPExternalControl supported (reboot!)
8th parameter is invalid (not accepted,

47 | WrongParameter8 command failed)

48 | WrongParameter9

49 | WrongParameter10

50 | WrongParameterll

51 | WrongParameter12

52 | WrongParameter13

53 | WrongParameter14

54 | WrongParameter15

55 | WrongParameter16
Tried to set a compensation that does
not exist. Use 'GetCopensations' to get

56 | NoSuchCompensation list of valid/existing IDs
Provided meteo data (temp, pressure,

57 | MeteoDataOutOfRange humidity) is out of accepted range
Command not allowed while system is

58 | InCompensationMode in compensation mode
Waiting for termination of a sub-
process, similar to 'ServerBusy', try

59 | InternalProcessActive again later
System requires a copy protection key

60 | NoCopyProtectionDongleFound (Dongle)

61 | ModuleNotActivated Current module not activated on Dongle
Version of current module is not
suitable / not up to date. Re-install

62 | ModuleWrongVersion server software
Get a new demo license or use a non-

63 | DemoDongleExpired demo Dongle
Probe attached (cable?) and power

64 | ParameterlmportFromProbeFailed ON?

Probe attached (cable?) and power

65 | ParameterExportToProbeFailed ON?

Selected Mechanical tracker
compensation relates to a
compensation with camera, but no one

66 | TrkCompMeasCameraMismatch is mounted, or vice versa
Tried to access 6DoF (T-Cam)
functionality without having a camera

67 | NoMeasurementCamera mounted or recognized

68 | NoActiveMeasurementCamera 6DoF camera (T-Cam) is not active
(Selected) T-Cam is not present in
Database (fatal error). Remove camera

69 | NoMeasurementCamerasinDb and remount it, then Re- Initialize
The system has no active
CameraToTracker compensation, use

70 | NoCameraToTrackerCompSet 'SetTCamToTrackerCompensation'
TCamToTracker compensation missing;
import a suitable one, or perform a

71 | NoCameraToTrackerComplnDb TCamToTracker compensation
T-Cam hardware information not

72 | ProblemStoringCameraToTrackerFactorySet recognized ('plug and play') (fatal error)
Something is wrong with camera
calibration (fatal error, hardware

73 | ProblemWithCameralnternalCalibration problem?)

74

CommunicationWithMeasurementCameraFailed

Is the camera mounted correctly?

75

NoMeasurementProbe

The issued command relates to Probe
functionality, but none is connected or
online (Probe power on?)

76

NoActiveMeasurementProbe

The issued command relates to Probe
functionality, but none is active

77

NoMeasurementProbesinDb

Probe hardware information not found
(‘plug and play') (fatal error). Try
removing Probe and reconnect it.

78

NoMeasurementProbeCompSet

The system has no active Probe
compensation, use
'SetProbeCompensation’

79

NoMeasurementProbeComplInDb,

Probe compensation missing; import a
suitable one, or perform a Probe
compensation

80

ProblemStoringProbeFactorySet

Hardware communication problem or
database error (fatal error)

81

WrongActiveMeasurementProbeCompinDhb

The available probe compensation does
not match the attached probe

82

CommunicationWithMeasurementProbeFailed

Communication problem with probe
(sometimes due to bad lllumination
conditions)

83

NoMeasurementTip

Issued command requires a Tip/Stylus
mounted to the probe

84

NoActiveMeasurementTip

The mounted Tip is not active (Perform
a TipToProbe compensation?)

85

NoMeasurementTipsinDb

Tip/Stylus hardware information not
found (‘plug and play") (fatal error)

86

NoMeasurementTipComplnDb

Tip/Stylus compensation is missing;
import a suitable one, or perform a
TipToProbe/Stylus compensation

87

NoMeasurementTipCompSet

The issued command relates to
Tip/Stylus functionality, but none is
active

88

ProblemStoringTipAssembly

Hardware communication or database
error (fatal error)

89

ProblemReadingCompensationDb

Database reading error (fatal)

90

NoDataTolmport

Import (Probe) parameters: imported file
does not contain suitable data

91

ProblemSettingTriggerSource

Hardware problem, or system is not
equipped with trigger-board

92

6DModeNotAllowed

System is in a condition/configuration
where 6DoF modes are not supported

93

Bad6DResult

System is able to measure 6DoF, but
results are unreliable (Tilt angle excess
of Probe, or not enough LEDs visible)

94

NoTemperatureFromWM

Tried to query a temperature value from
external meteo station, but no response
- is temperature sensor connected?)

95

NoPressureFromWM

Tried to query a pressure value from
external meteo station, but no response
- rarely happens since pressure device
is integrated and cannot be removed)

96

NoHumidityFromWM

Tried to query a humidity value from
external meteo station, but no response
- there may be no humidity sensor
connected)

97

6DMeasurementFace2NotAllowed

6DoF measurements by convention are
only allowed in Face I; Use
'‘ChangeFace’

98

InvalidinputData

Similar to 'WrongParameter', but cannot
exactly determine what's wrong

99

NoTriggerBoard

Tried to access Trigger Board features,
but the system is not equipped with a
Trigger board

10001

NoMeasurementShankCompSet

If we are in 'Shank' mode,
measurements without shank
compensation are not allowed

The issued command is not available
without having a valid ADM
compensation; import or perform a

10002 | NoValidADMCompensation mechanical tracker compensation
Pressure difference (from 2 internal
10003 | PressureSensorProblem sensors) too big
Tried to trigger a measurement while
10004 | MeasurementStatusNotReady status was not (yet) ready

Remark: Range 100..9999 is reserved for Controller/Sensor Firmware errors (as listed in Appendices
C and D), hence the gap between error #99 and #10001.

B2: TPI status values forwarded from special commands (sub- processes)

Remark: Not all of the errors listed below may be relevant to application programmers. The occurrence
of some may be very unlikely. Note that symbols (other than those in section B1) are not available to
application programmers by including certain files; they are listed for information only (in addition to

comments)

Errors marked with 'F' are unanticipated fatalities and should not occur under normal conditions.
All the listed errors are additional errors to the ones listed in the section above; that is, any of the
shared errors from section B1 might also apply to the special commands mentioned here.

B2.1 CallOrientToGravity command (reserved error-range: 20000..20999)

Number

Symbol (not exposed)

Comments

0 | OTG_SUCCESS Default status in case of command succeeded

20010 | OTG_ERR _UNSOLICITED An unsolicited error occurred

20011 | OTG_ERR_INIT_SOCKET Socket initialization failed (F)

20012 | OTG_ERR_OLECOM_INIT OLE/COM initialization failed (F)

20013 | OTG_ERR_RESOURCE_READ Reading resource string failed (F)

20014 | OTG_ERR_SEND_DATA Error on sending data (F)

20015 | OTG_ERR_RECEIVE_DATA Error on receiving data (F)

20016 | OTG_ERR_RESPONSE TIMEOUT No answer within reasonable time

20017 | OTG_ERR _SAVE DATA Error on saving results to database

20018 | OTG_ERR_TOO_ MANY_RETRIES Too many retries due unstable Nivel liquid
Invalid count of samples specified (min 2, max

20019 | OTG_ERR_INVALID SAMPLE COUNT | 10) (F)

20020 | OTG_ERR BAD COMMAND_ ANSWER | There was a command answer other than OK

20021 | OTG_ERR_OUT_OF VALID RANGE (Some) Nivel results are out of valid range

20022 | OTG_ERR_NIVEL _NOT_RESPONDING | No Nivel connected, or Nivel flagged off
/POS270 or /POS90 expected as

20023 | OTG_ERR_INVALID MOUNTING_ARG | commandline argument (F)

20024

OTG_ERR_FORCED_TERMINATION

Process terminated from outside

B2.2 CallintermediateCompensation command (reserved error-range: 23000..23999)

Number

Symbol (not exposed)

Comments

0 | IMC_SUCCESS Default status in case of command succeeded
The intermediate compensation cannot be
23010 | IMC_ERR_COMPNOTCALC calculated due to incomplete input data
23011 | IMC_ERR _OPEN_ESDB Open database failed (F)
Reading current compensation from database
23012 | IMC_ERR READ CRT _COMP failed
23013 | IMC_ERR_SAVE MEAS Writing measurements to database failed
No drive-points in database; Use
23014 | IMC_ERR_NO DRVPOINTS AddDrivePoint command
23015 | IMC_ERR_CREATE_COMP Creation of compensation failed in database
23016 | IMC_ERR_SAVE COMP Saving compensation to database failed
23017 | IMC_ERR_READ DRIVEPT Reading drive points failed
A full compensation is in work - cannot
23018 | IMC_ERR_FULL_COMP_INWORK continue
23019 | IMC_ERR_DELETE INWORK Could not delete In-work compensation
23020 | IMC_ERR_MEAS TIMEOUT Measurement Timeout
23021 | IMC_ERR_SVR GETTING Getting tracker parameters failed
23022 | IMC_ERR_SVR_SETTING Setting tracker parameters failed
Timeout in Positioning (no reflector within
23023 | IMC_ERR _POSITION TIMEOUT searched range?)
23030 | IMC_ERR BAD CMD_ ANSWER There was a command answer other than OK
23031 | IMC_ERR_SEND DATA Sending data via TCP/IP failed (F)
23032 | IMC_ERR_RECEIVE DATA Error on receiving data via TCP/IP (F)
23033 | IMC_ERR FORCED TERMINATION Process terminated from outside
23501 At least one of the 3 calculated mechanical
(no symbol) parameters is not in the range specified.
23502 Too few (less than 2) measurements
available. Calculation cannot be performed.
Either not enough driving points, or not all
(no symbol) could be found and/or measured.
23503 | (no symbol) Minimum vertical angle difference not met
23998 | IMC_ERR UNSOLICITED An unsolicited error occurred
23999 | IMC_ERR_UNKNOWN Unknown error

Warning Flags

Warning flags are a special issue applicable to 'Automated Intermediate Compensation' [IMC] only.
Warning flags are available upon a successful calculation. The parameter 'WarningFlags' is a 32-bit
integer value to be interpreted as a bit-mask. If the value is zero (hone of the bits set), then the
intermediate compensation process completed with no warnings at all. Otherwise, each raised bit
means a particular warning. There can be more than one warning at a time. Here is the meaning of the
particular bits:

Bit Symbol (not exposed) Comments

Bit 1 AverageVerticalTwoFaceErrorlsTooHigh Tracker service (from Leica Geosystems

(Ox1) personnel) is required because the vertical
index is constantly > 1 Gon. There is currently
no way for the user to reset the approximate
index.

Bit 2 AtLeastOneVerticalTwoFaceErrorlsTooHigh | If Bit 1 not raised, there is probably a very

(0x2) high error within a single two-face
measurement. If Bit 1 is raised too, ignore

warning Bit 2.

Bit 3 AtLeastOneDistancelsNotinRange At least one of the distances is smaller than

(Ox4) the minimum or larger than the maximum
recommended distance, according to the
recommendations.

Bit 4 NotEnoughMeasInTwoOppositeVerticalPlan | This warning covers all (except the range

(0Ox8) esWithGoodDiffOfVerticalAngle criterion) possible criteria, which are not
fulfilled by the measurement configuration,
according to the recommendations.

Bit 5 NotAllCorrectedDoubledTwoFaceErrorsAre | Not all measurement residuals are within

(0x10) | WithinCompensationTolerance recommended tolerances.

Bit 6 NotAllMechanicalParametersArelnRange Not all three (3) mechanical parameters

(0x20) calculated are within recommended tolerance
(according to hardware specs).

B2.3 CallTransformation command (reserved error-range: 24000..24999)

Number

Symbol (not exposed)

Comments

Default status in case of command

0 | TRAFO_SUCCESS succeeded

24010 | TRAFO_ERR_OLECOM_INIT OLE/COM initialization failed (F)

24011 | TRAFO_ERR RESOURCE_READ Reading resource string failed (F)
Error on reading input data from

24012 | TRAFO_ERR _READ DATA database (F)

24013 | TRAFO_ERR _SAVE DATA Error on saving results to database (F)

24020 | TRAFO_ERR_FIT FAILED Least Square Fit failed

24021 | TRAFO_ERR_INITIALFIT_FAILED Initial approximation for Fit failed

24022 | TRAFO_ERR_TOOMANYUNKNOWNNOMINALS | Too many unknown nominals

24023 | TRAFO_ERR_MULTIPLESOLUTIONS Multiple solution

C.

TRACKER ERROR NUMBERS

The error numbers that are sent with answers are all a three digit number. The first digit indicates
the category of the error condition that is reported. These are:

1XX System errors.
2XX Communication errors
3XX Parameter errors.
4AXX LCP hardware errors.
5XX IADM hardware errors.
6XX Hardware error in the TP, repair by service personnel (additional range to 9XX)
7XX Operation errors.
BXX Hardware configuration error, repair by user.
9XX Hardware error in the TP, repair by service personnel.
C.1 System Errors
101 | Program too large for BOOT to load.
102 | Program failed, reload or reboot.
103 | Invalid command.
104 | Boot command unable to open file in RAM disk
105 | Boot process interrupted by command
110 | Calibration not set.
111 | Tracker not initialized.
112 | reserved
113 | Calibration parameters sent to the wrong tracker.
114 | Target not defined (target offset for ADM measurement)
115 | No Compensation for ADM
116 | No Tracker Compensation with T-Cam
121 | TP.PGM Software running on a LT Controller
122 | LT.PGM Software running on a SMART310 Tracking Processor
123 | Boot failed, firmware file has invalid signature for LT Controller plus/base
130 | ADM not available
131 | Video Camera not available
132 | Beam expander lens for radial searching not available
133 | Nivel not available
134 | TCAM not available
135 | Probe not available
136 | Probe Tip not available
137 | Additional Compensation Tool not available
150 FlashDisk, file creation error
151 | FlashDisk, file delete error
152 | FlashDisk, disk full
153 | FlashDisk, file write error
154 | FlashDisk, file read error
199 | Command not implemented.
C.2 Communication Errors

201 [Overflow of input buffer.
202 [Communications timeout, the string is not completed within time period.
203 | Frame error, the format of the received string is not correct.

C.3

C4

205 [LAN communication too slow, TP runs out of recourses (buffers).
206 [LAN name conflict (more than one station with equal names online)
207 LAN, no session established between AP and TP

210 [Communications between TP and Laser Control Processor (LCP) has failed.
211 | Laser Controller/ADM/AIFM communication error

212 | Laser Controller/ADM/AIFM communication timeout

213 | Laser Controller/ADM/AIFM communication busy, no resources available
221 [Communications between TP and ADM has failed

222 | Communications between TP and Nivel20 has failed

225 | Laser Controller/ADM/AIFM communication, answer buffer too small
231 [TCAM communication failed

232 [TCAM communication timeout

233 | TCAM busy

241 [Probe communication failed

242 | Probe communication timeout

243 [Probe busy

251 [Probe Tip communication failed

252 | Probe Tip communication timeout

253 [Probe Tip busy

261 [Additional Compensation Tool communication failed

262 [Additional Compensation Tool communication timeout

263 [Additional Compensation Tool busy

299 [Unknown Device

Parameter Errors

3xx | Invalid value for parameter xx, where xx is the number of the parameter. The number of
the parameter depends on the command.
399 [Several parameters are invalid.

Laser Control Processor HW Errors

401 | LCP has no firmware loaded.

402 | Invalid Tracker Serial Number stored on the LCP

403 [Command not supported by the LCP

404 | LCP serial number key failed. Error reading silicon ID number.

405 | LCP serial number key failed. Tracker serial number, tracker model and silicon ID
number do not match.

406 | INVALID COMMAND (former: 103)

407 | NOT_IMPLEMENTED (former: 199)

408 | COMMAND_WRONG_CONTEXT (former: 104)

409 | PARAM_NR_FALSE (former: 300)

410 | INTERNAL CMD ERROR (former: 114)

411 | WRITE_ERROR (Lockbit active: -> write protected)

412 | LB ERROR_ARG1 (Lockbit: unknowm function)

413 | TO MANY_ PARAMS PER FRAME

414 | WRONG_STORAGE_ MODIFIER

420 | COM_FRAME ERROR (former: 203)

430 | +15 Power Supply failed

431 | On Board +5V digital Power Supply failed

432 | On Board +5V analog Power Supply failed

433 | On Board +3.3V digital Power Supply failed

434

On Board +4.096V reference Voltage failed

435

Peltier Check failed

436

Single Fault Diode cable not connected

437

Peltier cable not connected

438

Laser Power Supply cable not connected

439

Laser Temperature Sensor is not working

440

Air in Temperature Sensor is not working

441

Heatsink Temperature Sensor is not working

442

Air out Temperature Sensor is not working

449

Unknown hardware error

460

Laser current failed

461

Laser Off-Spike detected

462

Laser Mode Light failed, not enough light

463

Polarisation error to high

464

No minimum light value detected

465

Laser Mode Hopping -> Warmup changed to Temperature Mode

480

TIMEOUT: Laser Modecounting failed

481

TIMEOUT: Laser unable to stabilize

485

TIMEOUT: Looptimer stopped, -> Watchdog

499

Unknown error

C.5 Absolute Distance Meter HW Errors

501 | ADM has no firmware loaded.

502 [Set frequency not locked.

503 [Set frequency, illegal state (internal software error)

504 [Measurement cycles exceeded

505 | Reserved

506 [lllegal state (internal software error)

507 | Minimum lost, unstable measurement conditions

508 [Reserved

509 Start failed, hardware error

510 | Reserved

511 [Band scanning failed

512 [Frequency unstable

513 [No RF current

514 Frequency current error

515 [Security timeout, maximal measurement time exceeded

516 [Security lock, no light from Interferometer

517 | Invalid distance

518 [Emergency Power Output Lock,

519 [Measurement aborted by user/Application

550 | Light polarization during ADM measurement too unstable
(happens normally only on large entry angles into prisms)

551 | ADM measurement, distance difference of double measurement out of tolerance

552 | ADM measurement, invalid temperature

597 | ADM communication, frame error

598 [ADM —LTC communication, internal software error

599 | unknown ADM error

C.6 Hardware Error (additional error numbers to the 9xx group)

600

601

Motor Amplifier, digital Poti set invalid

602

Motor Amplifier, digital Poti access error

603

Motor Amplifier, I°C-Bus failed

604

LTCplus/base, front panel cable not connected

605

LTCplus/base, fan cable not connected

606

LTCplus/base, video output cable not connected

607

LTCplus/base, frame grabber video cable not connected (emScon side)

608

LTCplus/base, PC backplane to Motor Amplifier cable not connected

609

Motor Amplifier, motor power (28V) Watchdog has locked

610

Beam expander lens not in parking position (moved out of the beam).

611

Beam expander lens not able to move into the beam.

614

Hardware error, PSD offset measurement misses points

615

Collar reflector measurement, X range error

616

Collar reflector measurement, Y range error

617

Collar reflector measurement, target lost

620

IFM fail signal shows always ok (also in cases where the beam is not on a target)

621

IFM count not stable (counting error during servo control point measurement)

622

Synchronisation line ADM to TP failed

623

Synchronisation line TP to ADM failed

625

Hardware error, no LTC/ATC card found

626

Hardware error, old version of LTC/ATC card

630

Serial port COML1: not available

631

Serial port COM1: hardware failure

632

Serial port COML1: reserved

633

Serial port COM2: not available

634

Serial port COM2: hardware failure

635

Serial port COM2: reserved

636

Serial port COMS3: not available

637

Serial port COMS3: hardware failure

638

Hardware error, Interrupt of COM Port 3 and 4 not working

639

Hardware error, COM Port 4 not installed

640

No Trigger Card

641

No internal TCAM/Probe cable

642

No internal Trigger 1/O cable

643

No Cable Trigger to Mot.Amp.Card

644

Incompatible program on Trigger Card (FPGA)

645

No Packet Driver installed for T-Cam communication

650

Motor Amplifier Card hardware error, incompatible motor amplifier board

651

Motor Amplifier Card hardware error, IDE bus error

652

Motor Amplifier Card hardware error, encoder cable not connected

653

Motor Amplifier Card hardware error, motor phasing error

654

Motor Amplifier Card hardware error, motor phasing timeout

655

Motor Amplifier Card hardware error, no digital poti setting for encoder interface on the
motor amplifier card

656

Motor Amplifier Card hardware error, incompatible firmware

657

Motor Amplifier Card hardware error, parameter set not available

658

Motor Amplifier Card hardware error, parameter set invalid

659

Motor Amplifier Card hardware error, parameter set doesn’t match with motor topology

660

Motor Amplifier Card hardware error, amplifier over temperature

661

Motor Amplifier Card hardware error, 28V power supply under voltage

662

Motor Amplifier Card hardware error, AZ motor over current

663

Motor Amplifier Card hardware error, EL motor over current

690

AT901x Sensor, Bottom Board cable not connected

691

AT901x Sensor, EL spiral cable not connected

692

AT901x Sensor, Az Axis cable not connected

693

AT901x Sensor, internal NIVEL cable not connected

694

AT901x Sensor, internal Probe cable not connected

699

Sensor/Motor cable length measurement error

C.7 Operation Errors

701 [Target lost, tracking has failed.

702 | Interferometer has failed, lost count.

703 | Azimuth limit has been reached. The tracker head has attempted to go beyond the
+240 degrees.

704 | Elevation limit has been reached.

705 | Positioning timeout, positioning of the tracker head could not be completed within the
timeout period.

706 | Abort command.

707 | invalid angle on the azimuth axis.

708 [invalid angle on the elevation axis.

710 | Radial speed is within bounds. (Sent after a speed warning when the speed has
returned to acceptable bounds.)

711 | Radial speed warning. This is a warning that the movement of the reflector in the radial
direction is approaching the speed limit.

712 | Radial speed error. This indicates that the radial speed has exceeded the capacity of
the interferometer and there is a likely loss of accurate distance setting.

720 | Intensity overflow on photosensor. This error occurs, if the intensity value from the
photosensor exceeds the range of the A/D converter. The TP will change the A/D range
automatically.

721 | Laser light mode has jumped. This means the laser control loop wasn'’t able to stabilize
the laser tube. (This can be caused by a fast and large temperature change).

722 | Laser stabilization in progress, wait until the laser is stable before tracking.

723 | Laser is unable to stabilize.

724 | Laser light is switched off.

731 [Reflector too close to the Tracker for measuring the distance with the ADM.

732 | ADM gets no signal from the reflector

733 | ADM measuring timeout, the communication with the ADM is working, but there is no
completed measurment within a certain time by the ADM.

734 | Target was not stable during the ADM measurement

735 | Reflector too far from the Tracker to measure the distance with the ADM.

736 | Distance measured by the ADM is invalid, out of range
reserved

740 | 3D measurement on 6DoF-Probe not allowed
reserved

760 | TCAM vertical drive not initialized

761 | TCAM zoom not initialized

762 | TCAM no Synchronization Signal

763 | TCAM zoom out of Range (1.5...15m)

764 | TCAM overload stop in vertical drive

765 | TCAM positioning timeout, didn't get on track in a certain time

766 | Probe communication timeout, we see markers but don’t get any Info from Probe

767 | TCAM frame grabber error

768 | TCAM marker identification error

769 | Probe during ADM and 6DoF logon process not stable

770 | Laser entry angle on Probe out of range for logon with the ADM

771 [Probe recognize error from T-Cam

772 | Probe model load to T-Cam error

773 [Prism model load errorin LTC

774 | Probe model invalid or unsuitable to device

C.8 Hardware Configuration Errors (user correctable)

801

Power switch from the rack is off.

802

Power switch for tracker motor is off.

810

Cables from TP to the rack are not connected.

811

DA-cable from TP to the rack is not connected.

812

Encoder-cable from TP to the rack is not connected.

813

Communication from the TP to the rack is not connected.

820

Cables from the rack to the sensor tube are not connected.

821

TCAM cable from LTCplus to sensor tube not connected

822

Cable connection error, T-CAM cable connected with an AT901 tracker

831

Azimuth index offset is not suitable for this measuring head.

832

Elevation index offset is not suitable for this measuring head.

841

Azimuth encoder interpolation rate wrong

842

Elevation encoder interpolation rate wrong

843

An new LT/LTD500 Sensor in use with an old SMART310 Controller/TP, not
compatible!

844

An old SMART310 Sensor in use with the new LT Controller, it is not compatible.

845

An old SMART310 Sensor cable is in use, it isn't compatible with the new LT
Controller and LT/LTD500 Sensor.

846

LTD600/700/800 sensor connected to a classic (LTD500) controller

847

TCAM not compatible with Tracker (LTD7/800 mixed with TCAM8/700)

848

Incompatible T-CAM, LT Controller and/or Tracker combination

850

TCAM on tracker head not locked

851

Incompatible, LT/AT Controller and Tracker combination

852

Incompatible firmware for LT/AT Controller and Tracker

853

Motor amplifier uP in service mode

854

AT901, Quick release open error

C.9 Hardware Error (requires service personnel)

901

Azimuth axis is not working.

902

Elevation axis is not working.

903

Azimuth Tacho signal failed.

904

Elevation Tacho signal failed.

905

Azimuth encoder is not working.

906

Elevation encoder is not working.

907

Azimuth index mark does not respond.

908

Elevation index mark does not respond.

909

Azimuth moving range limited (can not move +/- 240 degrees).

910

Photo sensor is not working properly.

911

Photo sensor does not receive enough light.

912

Photo sensor intensity signal failed

913

Photo sensor X signal failed

914

Photo sensor Y signal failed

915

Calculation error while determining the SERVO CONTROL POINT.

916

No collar reflector found for measuring the servo control point. (or the beam intensity is
not strong enough to locate the collar reflector.).

917

Laser unable to stabilize, hardware error on the laser detected.

918

Interferometer is not working properly. (eg, at test into the collar reflector did not work)

919

‘Lost counts’ signal of the interferometer is not working properly.

921

LAN, Command line switch error.

923

No LANtastic hardware detected.

924

LAN, Shared RAM did not pass tests.

925 [LAN Coprocessor did not respond to reset.

927 [LAN, Interrupt level error.

930 [No encoder board detected.

931 [Encoder board, Azimuth counter is not working.

932 | Encoder board, Elevation counter is not working.

933 Encoder board, Interferometer counter is not working.

934 | Encoder board, Azimuth index pulse failed.

935 | Encoder board, Elevation index pulse failed.

936 Encoder board, Latch signal for counters failed.

937 [Encoder board, disabling of index pulses failed.

938 [Encoder board, cannot switch on the receiver for index pulses.
939 [Encoder potentiometer adjustments, invalid.

940 | No A/D board detected.

941 [A/D board, Unipolar/Bipolar switch is set wrong.

942 [A/D board, 8/16 channel switch is set wrong.

943 [A/D board, Analog input multiplexor error.

944 | A/D board, A/D converter is not working.

945 [A/D board, DMA data transfer is not working.

946 | A/D board, onboard clock is not working.

947 [A/D board, Pacer clock too slow, switch is set wrong.

948 [A/D board, Pacer trigger is not working.

949 [A/D board, External trigger is not working.

950 [A/D board, A/D voltage range switch is not working.

951 [A/D board, A/D input offset is out of tolerance.

952 [A/D board, DMA transfer synchronization error.

953 [A/D board, Ref. Voltage Jumper for DAC in wrong position
954 [D/A board, zero point of DAC out of tolerance

955 D/A board, both axes not working.

956 [D/A board, Azimuth axis not working.

957 | D/A board, Elevation axis not working.

958 | Azimuth motor amplifier balance not properly adjusted.

959 [Elevation motor amplifier balance not properly adjusted.

960 [reserved

961 CPU board, DMA controller failed.

962 [CPU board, DMA controller wrap around error

963 [reserved

964 | CPU board, CPU clock too slow.

968 [CPU board, not enough memory for dynamic memory allocation.
969 [reserved

970 [LTC, internal PSD input cable not connected.

971 | LTC, internal Motor I/O cable not connected.

972 | LTC Digital I/O cable not connected.

973 | LTC, COM1 cable not connected

974 [LTC, COM2 cable not connected

975 LTC, Az Encoder Cable not connected

976 | LTC, El Encoder cable not connected

977 [LTC, Cable between A/D board and LTC card not connected
978 [LTC, HW Trigger cable LTC card to Encoder card not connected
979 [LTCplus, Encoder Latch Cable, Motor Amplifier to Encoder Card not connected
980 | LTC, +5V Power Supply failed

981 [LTC, +7V Power Supply failed

982 [LTC, +12V Power Supply failed

983 | LTC, +28V Power Supply failed

984 | LTC, -5V Reference voltage failed

985 [LTC, -7V Power Supply failed

986 | LTC, -12V Power Supply failed

987 [LTC, Inhibit of 28V Power Supply not working

988 [LTC, +15V Power Supply failed

989 [LTC, -15V Power Supply failed

990 [LTC, Tacho Power Supply failed (located in the measuring head)

991 [LTC, 2.5/3.3V Supply failed on LTC Card

992 [LTCplus, +5V Supply failed on Motor Amplifier

993 [LTCplus, +12V Supply failed on Motor Amplifier

994 [LTCplus, -12V Supply failed on Motor Amplifier

995 [LTCplus, +3.3V Supply failed on Tracker Server (emScon)
996 [LTCplus, +12V Supply failed on Tracker Server (emScon)
997 [LTCplus, -12V Supply failed on Tracker Server (emScon)

998 [LTCplus, Power for FAN's on Front Panel failed

999

Unknown hardware error.

D. T-Cam / T-Probe ERROR NUMBERS

Unique ID Text

2150 MSGERR: ERROR, message table inconsistent (entry: %d)!

2151 MSGERR: ERROR, attachement ring buffer overrun!

2200 PARMGR: MESSAGE, New parameter initialisation!

2201 PARMGR: ERROR, CRC on parameter table!

2202 PARMGR: ERROR, not allowed range for this parameter!

2203 PARMGR: ERROR, unknown parameter id!

2204 PARMGR: REMARK, parameter table is full!

2205 PARMGR: WARNING, table size defined in code and that saved in flash differs

2206 PARMGR: WARNING, error occure during load!

2207 PARMGR: ERROR, error occure during save!

2208 PARMGR: ERROR, invalid command parameter !

2210 PARTBL: ERROR, flash table not found

2211 PARTBL: ERROR, invalid table block number!

2212 PARTBL: ERROR, invalid table data!

3000 CMDI: ERROR, unknown keyword!

3003 CMDI: ERROR, not allowed command in this mode!

3004 CMDI: ERROR, to long string parameter!

3050 DCSC: ERROR, wrong value for T-Cam mode!

3052 DSPHL: ERROR, timeout during V_INIT command

3054 DSPHL: ERROR, timeout during V_INFO command !

3110 TGT: Command parameter invalid - command not executed
3111 TGT: FGIF data invalid — data block discarded
3112 TGT: Section list overflow — line discarded

3113 TGT: Invalid image item — data item skipped

3114 TGT: Objects per line overflow — further objects discarded

3115 TGT: Objects in total overflow — further objects discarded

3116 TGT: Too many objects surrounding feature - feature not tracked

3117 TGT: Timeout in TGT extraction

3150 VTT: ERROR, invalid angle!

3151 VTT: ERROR, invalid distance!

3153 VTT: ERROR, invalid command parameter!

3154 VTT: ERROR, command not allowed!

3156 VTT: ERROR, timeout command function!

3157 VTT: ERROR, mode changing not possible!

3158 VTT: ERROR, error during V_OFFSET procedure!

3200 DARK: ERROR, timeout while getting image!

3203 DARK: ERROR, timeout of blende command

3204 DARK: ERROR, camera access error !

3205 DARK: ERROR in a state!

3300 DIFF: ERROR, timeout while getting image!

3301 DIFF: ERROR in a state!

4000 COM: WARNING, too many active ethernet clients

4001 COM: WARNING, ethernet client id not found

4010 COM: ERROR, ethernet module already initialized!

4011 COM: ERROR, init of the ethernet module failed!

4012 COM: ERROR, trying to access ethernet module in uninitialized state!

4013 COM: ERROR, receiving error occurred (error code %u)!

4014 COM: ERROR, transmit error occurred (error code %u)!

Unique ID Text

4015 COM: ERROR, transmit buffer is too big for appending!

4050 FGIF: ERROR, image memory overflow!

4051 FGIF: ERROR, image data not picked up!

4052 FGIF: ERROR, command not allowed!

4053 FGIF: ERROR, invalid command parameter!

4054 FGIF: ERROR, timeout command function!

4055 FGIF: ERROR, 100Hz synchronisation failure!

4056 FGIF: ERROR, FPGA watchdog failure!

4057 FGIF: ERROR, FPGA data overflow error!

4058 FGIF: ERROR, GBPS data failure!

4059 FGIF: ERROR, GBPS synchronisation error!

4060 FGIF: ERROR, mailbox overflow in full picture mode!

4100 MOT: ERROR, encoder failure!

4101 MOT: ERROR, wrong encoder counter direction!

4102 MOT: ERROR, motor controller failure!

4103 MOT: ERROR, motor unit is blocked or braked!

4104 MOT: ERROR, reflexion sensor failure!

4105 MOT: ERROR, unknown error in open loop check!

4106 MOT: ERROR, function call not allowed!

4107 MOT: ERROR, standstill error while closed loop check!

4108 MOT: ERROR, timeout during closed loop check!

4109 MOT: ERROR, timeout during reference search!

4110 MOT: ERROR, no index position found!

4111 MOT: ERROR, no cable feedback signal!

4112 MOT: ERROR, encoder status error!

4113 MOT: ERROR, encoder signal error!

4114 MOT: ERROR, over temperature on sensor 0!

4115 MOT: ERROR, over temperature on sensor 1!

4116 MOT: ERROR, over current on motor 0!

4117 MOT: ERROR, over current on motor 1!

4150 PROBE: ERROR, wrong command parameter!

4200 ZFCI: INFO, zoom controller is connected again to the DSP

4210 ZFCIl: ERROR, no zoom controller connected to the DSP!

4211 ZFCIl: ERROR, dsp-avr synchronisation error!

4212 ZFCIl: ERROR, checksum failure!

4213 ZFCI: ERROR, incorrect flash or eeprom address!

4214 ZFCI: ERROR, flash or eeprom address already written!

4215 ZFCIl: ERROR, zoom controller reports an error - command not executed!
4216 ZFCIl: ERROR, command may not be executed at the moment!

4217 ZFCI: ERROR, invalid command parameter!

4218 ZFCIl: ERROR, wrong ZFC answer!

4250 FLASH: REMARK, space in err/log message sector is running out

4251 FLASH: REMARK, err/log message sector erased successfully

4260 FLASH: ERROR, err/log message sector erase failed!

4261 FLASH: ERROR, writing of a err/log message failed!

4350 SPIl: ERROR, Receive timeout occurred!

4351 SPI: ERROR, Transmit channel not ready!

4400 SYNCH: ERROR, No external synch input received!

4450 CCIR: ERROR, invalid command parameter!

4500 FLTABHD: REMARK, parameter table is empty!

4501 FLTABHD: REMARK, recovery of the corresponding table failed!

4502 FLTABHD: WARNING, read parameter table is not valid!

Unique ID Text
4510 FLTABHD: ERROR, FLASH write error!
4511 FLTABHD: ERROR, FLASH read error!
4512 FLTABHD: ERROR, reset of a parameter table failed!
4513 FLTABHD: ERROR, module initialization failed or was not done!
4514 FLTABHD: ERROR, malloc error occurred!
4515 FLTABHD: ERROR, parameter table write error (crc check was not successful)!
4516 FLTABHD: ERROR, sector erase error!
4550 CAM: ERROR, invalid Z CAMCOM answer!

4551

CAM: ERROR, no valid camera FPGA version!

E. AIFM Error IDs

Upon an above command the AIFM can report the following errors:

ID Error Text Exception Type Triggered in Module

general aifm errors AifmException

7000 no interferometer available AifmException CommandOld

7001 unknown spiral-cable state AifmException CommandOld

7002 | unknown CBL_CHK_NIV state AifmException CommandOld

7003 unknown CBL_CHK_PRB state AifmException CommandOld

7004 | unknown Quick-Release state AifmException CommandOld

7005 | checksum error AifmException CommandOld

7006 invalid temperature AifmException CommandOld

7007 undefined feature table request AifmException CommandOld

7099 undefined AdmException indefinite
adm errors AdmException

7100 | flap motor failed AdmException Flap00

7101 | flap not initialized AdmException Flap00

7102 | flap not initialized, no free resources AdmException Flap00

7103 positioning error, flap possibly jammed AdmException Flap00

7104 | flap positioning error, faulty hardware AdmException Flap00

7105 | cannot start EOM test, invalid mode AdmException Flap00

7106 EOM test in progress or incorrect parameters AdmException Flap00

7130 resonator not calibrated AdmException Resonator00

7131 | calibration flap position timeout AdmException Resonator00

7132 | flap during flap calibration out of range AdmException Resonator00

7133 | flap calibration amplitude jump error due to flap AdmException Resonator00
vibraions

7134 | flap calibration amplitude overflow AdmException Resonator00

7135 | calibration maximum not found AdmException Resonator00

7136 | calibration frequency-position polynom fit failed AdmException Resonator00

7137 | calibration position-amplitude polynom fit failed AdmException Resonator00

7138 | flap position timeout AdmException Resonator00

7139 max flap pos too large AdmException Resonator00

7140 max flap pos too small AdmException Resonator00

7141 | flap consistency suspicious AdmException Resonator00

7160 | error on param initializing: pllIFrequency AdmException AdmO00

7161 | error on param initializing: sweepFlap AdmException AdmO00

7162 | error on param initializing: ddsFrequency AdmException AdmO00

7163 | error on param initializing: sweepStart AdmException AdmO00

AIFM Error Numbers

Page - 1

7164 | error on param initializing: sweepEnd AdmException AdmO0
7165 | flap calibration table initialize error AdmException AdmO00
7166 invalid argument AdmException AdmO00
7167 | distance invalid AdmException AdmO0
7168 | max loop count exceeded in wobble minimum AdmException AdmO00
search
7169 | only one minima found (distance too small) AdmException AdmO0
7170 | no minima found (distance too small) AdmException AdmO00
7171 | flap calibration table read item error AdmException AdmO00
7172 | fine low frequency out of range AdmException AdmO00
7173 | fine high frequency out of range AdmException AdmO00
7175 | sf overflow error AdmException AdmO0
7176 | sflevel too small AdmException AdmO0
7177 read sweep values are not valid --> semaphore error | AdmException AdmO00
7178 no adm signal available AdmException AdmO0
7179 | adm signal too weak AdmException AdmO00
7180 | distance too large (restricted by the system) AdmException AdmO00
7181 | distance too small (restricted by the system) AdmException AdmO00
7190 laser output level (persistency value) too large AdmException Lasercontrol00
7191 laser target sf value (persistency value) too large AdmException LasercontrolO0
7199 undefined AdmException indefinite
persistence errors PersistException
7200 Software error (usually indicates not implemented PersistException Storage or Stream
items)
7201 Invalid directory name (name longer than 28 char, or | PersistException Storage
contains blanks, or an invalid character [*\/:\"?<>=])
7202 Invalid file name (name longer than 28 char, or PersistException Storage
contains blanks, or an invalid character [*\/:\"?<>=])
7203 Invalid property flags for persist parameter specified | persistException Storage
7204 Invalid storage (fatal FS or flash failure) PersistException Storage
7205 Invalid stream (fatal FS or flash failure) PersistException Storage
7206 | Index access violation PersistException | Storage
7207 Internal to external type- mapping failure PersistException Storage
7208 Dynamic memory allocation failure (fatal) PersistException Storage
7209 | Could not query parameter description PersistException | Storage
7210 | Tried to write a hardcoded parameter to disk PersistException Storage
7250 | Creation of directory failed (fatal FS or flash failure) PersistException Storage
7251 Removing of an (empty!) directory failed (fatal) PersistException Storage
7252 | Opening file failed PersistException Storage

AIFM Error Numbers

Page - 2

7253 | Writing (to previously opened) file failed PersistException Stream
7254 Reading (from previously opened) file failed PersistException Stream
7255 | Creating file failed PersistException Storage
7260 | Creation of working data (tree) copy failed PersistException Storage
7261 | Copying working data tree to master tree failed PersistException Storage
7262 Packing of Tree into file (for export) failed PersistException Storage
7263 Unpacking imported file failed (import) PersistException Storage
7270 | Thread (for Commit, Rollback, and Reset) did not PersistException Storage

terminate successfully. Either copying disk- data

(Commit, Rollback) or deleting data (Reset) failed,;

Or reloading parameters after a Rollback failed

(most likely for load() methods that contain hardware

init stuff).

Notice that after a Rollback the load() method of

every module is being called!
7271 | Tried to start a 2nd thread before already running PersistException Storage

one was terminated. Only one thread (Commit,

Rollback, Reset) is allowed.
7272 Synchronisation (by using semaphore) between PersistException Storage

main and secondary thread failed
7299 undefined PersistException indefinite

ifm errors IfmException
7300 | gain value too large IfmException Interferometer
7301 | wrong temperature sensor id IfmException Interferometer
7399 undefined IfmException indefinite

devapi errors DevApiException
7499 undefined DevApiException | indefinite

sensor errors SensorException
7500 | can't write the serial number SensorException | TrackerTypeManager
7501 | can't read the serial number SensorException | TrackerTypeManager
7502 | can't access id chip SensorException | TrackerTypeManager
7503 | crc error inid chip SensorException | TrackerTypeManager
7504 | can't write tracker type SensorException | TrackerTypeManager
7505 | can't write tracker type key SensorException | TrackerTypeManager
7506 | can't read tracker type SensorException | TrackerTypeManager
7507 | can't read tracker type key SensorException | TrackerTypeManager
7508 unknown tracker SensorException | TrackerTypeManager
7509 invalid file transfer compression SensorException FileTransfer
7599 undefined SensorException | indefinite

AIFM Error Numbers

Page - 3

Leica Geosystems AG

Metrology Products

Moenchmattweg 5

CH-5035 Unterentfelden

Switzerland

Phone +41 62 737 67 67
info.metrology®leica-geosystems.com

www.leica-geosystems.com/metrology

Whether building the fastest car, the biggest plane or the
most precise tooling, you need exact measurements to
improve quality and productivity. So when it has to be right,
professionals trust Leica Geosystems metrology products to
help collect, analyze and present 3-dimensional (3D) data for
industrial measurement.

Leica Geosystems Metrology is best known for its broad array
of control and industrial measurement products, including
high-precision industrial theodolites and total stations, laser
trackers and 6 Degrees of Freedom-based (6DOF) Portable
CMM systems. The latter include the Leica T-Probe hand-
held armless probe, Leica T-Scan hand-held laser scanner
and Leica T-Mac tracking device for automated applications.
Leica Geosystems also offers a broad range of 3D metrology
software solutions. Those who use the metrology products
by Leica Geosystems every day trust them for their
dependability, the value they deliver and the world-class
service and support that's second to none.

Precision, reliability and service from Leica Geosystems
metrology products.

When it has to be right.

©2008 Copyright Leica Geosystems AG,
Heerbrugg, Switzerland. For more information,
please contact info.metrology@leica-geosystems.com

L _

®
- when it has to be right c&m_g

Geosystems

	1 Contents
	2 Introduction
	2.1 Prerequisites
	2.1.1 Targeted Users and Terminology
	2.1.2 Common Abbreviations
	IT / Windows / Microsoft specific
	 Leica / emScon specific

	
	2.1.3 Supported Leica Hardware
	2.1.4 Network requirements
	2.1.5 Programming Environment

	2.2 TCP/IP Communication
	2.2.1 Socket Functions

	2.3 Tracker Programming Interface
	2.3.1 Platform and Programming Language Issues
	2.3.2 Prefixes and Suffixes used in Type Names
	2.3.3 Asynchronous Communication
	2.3.4 Working Conditions
	Level 1
	Level 2

	2.3.5 Coordinate Parameter Triplets
	2.3.6 Persistency
	2.3.7 Default Settings
	2.3.8 Application Backward Compatibility
	Applications supporting different server versions

	2.3.9 Sample Code
	Error Handling
	Interface Design
	Hard Coded Information

	2.4 Application Initial Steps
	2.4.1 Essential Steps
	2.4.2 Command Sequence for 3D Measurements
	2.4.3 Command Sequence for 6DoF Measurements
	2.4.4 Initial Steps Description in Detail
	 Initialize Laser Tracker
	 Set Current Environmental Parameters
	 Set Reflector
	 Set Compensation
	 Set T- Cam To Tracker Compensation
	 Set Probe Compensation
	 Keep Last Position Flag
	 Station Parameters
	 Transformation Parameters
	 Coordinate System Type

	2.4.5 Automatic External Device Recognition

	3 C - Interface
	3.1 Low-level TPI Programming
	3.1.1 Preconditions
	3.1.2 Recommendation
	3.1.3 Byte Alignment
	3.1.4 Little/Big Endians
	3.1.5 Preprocessor Statements
	3.1.6 TPI 'Boolean' Data Type
	3.1.7 Enumeration-Type Members Numerical representation
	3.1.8 Basic C Data Type size of TPI Structures

	3.2 Communication Basics
	3.2.1 Sending Commands
	3.2.2 Command Answers
	Non-data Returning Command Answers
	Property-data Returning Command Answers
	Single Measurement Answers
	Multi-Measurement Answers
	Special Command Answers

	3.2.3 Error Events
	3.2.4 System Status Change Events
	3.2.5 3D / 6 DoF – Related commands

	3.3 C- Language TPI Reference
	3.3.1 Constants
	3.3.2 Enumeration Types
	ES_DataType
	ES_Command
	1.) Naming Convention Send / Receive Structs
	2.) Dimensions / Units of Parameters
	3.) Valid Parameter Ranges
	Reading Instructions Set/Get Command- pairs.

	ES_ResultStatus
	ES_MeasMode
	ES_MeasurementStatus
	ES_TargetType
	ES_TrackerTemperatureRange
	ES_CoordinateSystemType
	ES_LengthUnit
	ES_AngleUnit
	ES_TemperatureUnit
	ES_PressureUnit
	ES_HumidityUnit
	ES_TrackerStatus
	ES_ADMStatus
	ES_NivelStatus
	ES_NivelPosition
	ES_WeatherMonitorStatus
	ES_RegionType
	ES_TrackerProcessorStatus
	ES_LaserProcessorStatus
	ES_SystemStatusChange
	ES_StatisticMode
	ES_StillImageFileType
	ES_TransResultType
	ES_TrackerProcessorType
	 ES_TPMicroProcessorType
	 ES_LTSensorType
	 ES_DisplayCoordinateConversionType
	 ES_TriggerStatus
	ES_MeasurementTipStatus
	ES_TriggerSource
	ES_TrackerFace
	ES_MeasurementCameraMode
	ES_MeasurementCameraType
	ES_ProbeType
	ES_ProbeConnectionType
	ES_ProbeButtonType
	ES_TipType
	ES_ClockTransition
	ES_TriggerMode
	ES_TriggerStartSignal
	ES_SystemParameter
	ES_ProbeConfigButton
	ES_ProbeConfigTip
	ES_ProbeButtonEvent
	ES_QuickReleaseStatus
	ES_MeasurementStatusInfo
	ES_ClearCommandQueueType
	ES_OverviewCameraType
	ES_TriggerCardType
	ES_ADMType
	ES_TrkAccuracyModel
	ES_NivelType
	ES_TipToProbeCompensationType

	3.4 Data Structures
	3.4.1 Basic Data Structures
	PacketHeaderT
	ReturnDataT
	BasicCommandCT
	BasicCommandRT
	MeasValueT
	MeasValue2T
	ProbeMeasValueT
	RotationStatus
	StationaryModeDataT
	ContinuousTimeModeDataT
	ContinuousDistanceModeDataT
	SphereCenterModeDataT
	CircleCenterModeDataT
	GridModeDataT
	SearchParamsDataT
	AdmParamsDataT
	SystemSettingsDataT
	SystemUnitsDataT
	EnvironmentDataT
	RefractionDataT
	StationOrientationDataT
	TransformationDataT
	BoxRegionDataT
	SphereRegionDataT
	ESVersionNumberT
	TransformationInputDataT
	TransformationPointT
	CameraParamsDataT

	3.4.2 Packet Data Structures
	ErrorResponseT
	SingleMeasResultT
	SingleMeasResult2T
	MultiMeasResultT
	MultiMeasResult2T
	ProbeStationaryResultT
	ProbeContinuousResultT
	NivelResultT
	ReflectorPosResultT
	ProbePosResultT
	SystemStatusChangeT
	ExternTriggerParamsT
	Non- Parameter Command/Return Types
	SwitchLaserCT/RT
	FindReflectorCT/RT
	Set/GetCoordinateSystemTypeCT/RT
	Set/GetMeasurementModeCT/RT
	Set/GetTemperatureRangeCT/RT
	Set/GetStationaryModeParamsCT/RT
	Set/GetContinuousTimeModeParamsCT/RT
	Set/GetContinuousDistanceModeParamsCT/RT
	Set/GetSphereCenterModeParamsCT/RT
	Set/GetCircleCenterModeParamsCT/RT
	Set/GetGridModeParamsCT/RT
	Set/GetSystemSettingsCT/RT
	Set/GetUnitsCT/RT
	GetSystemStatusCT/RT
	GetTrackerStatusCT/RT
	Set/GetReflector(s)CT/RT
	Set/GetSearchParamsCT/RT
	Set/GetAdmParamsCT/RT
	Set/GetEnvironmentParamsCT/RT
	Set/GetStationOrientationParamsCT/RT
	Set/GetTransformationParamsCT/RT
	Set/GetBoxRegionParamsCT/RT
	Set/GetSphereRegionParamsCT/RT
	GoPositionCT/RT
	GoPositionHVDCT/RT
	PositionRelativeHVCT/RT
	PointLaserCT/RT
	PointLaserHVDCT/RT
	MoveHVCT/RT
	GoNivelPositionCT/RT
	LookForTargetCT/RT
	GetDirectionCT/RT
	Set/GetStatisticModeCT/RT
	Set/GetCameraParamsCT/RT
	 AddDrivePointCT/RT
	CallOrientToGravityCT/RT
	CallIntermediateCompensationCT/RT
	CallTransformationCT/RT
	Set/GetTransformationInputParamsCT/RT
	AddTransformationNominalPointCT/RT
	AddTransformationActualPointCT/RT
	GetTransformedPointsCT/RT
	GetStillImageCT/RT
	GoBirdBath2CT/RT
	GetCompensationCT/RT
	SetCompensationCT/RT
	GetCompensationsCT/RT
	GetCompensations2CT/RT
	CheckBirdBathCT/RT
	GetTrackerDiagnosticsCT/RT
	GetADMInfoCT/RT
	GetNivelInfoCT/RT
	GetTPInfoCT/RT
	SetLaserOnTimerCT/RT
	GetLaserOnTimerCT/RT
	ConvertDisplayCoordinatesCT/RT
	Set/GetTriggerSourceCT/RT
	GetFaceCT/RT
	GetCamerasCT/RT
	GetCameraCT/RT
	Set/GetMeasurementCameraModeCT/RT
	GetProbesCT/RT
	GetProbeCT/RT
	GetTipAdaptersCT/RT
	GetTipAdapterCT/RT
	Get/SetTCamToTrackerCompensationsCT/RT
	Get/SetTCamToTrackerCompensationCT/RT
	GetProbeCompensationsCT/RT
	Get/SetProbeCompensationCT/RT
	GetTipToProbeCompensationsCT/RT
	GetTipToProbeCompensations2CT/RT
	GetTipToProbeCompensationCT/RT
	Get/SetExternTriggerParamsCT/RT
	GetErrorEllipsoidCT/RT
	GetMeasurementCameraInfoCT/RT
	GetMeasurementProbeInfoCT/RT
	Get/SetLongSystemParamCT/RT
	GetMeasurementStatusInfoCT/RT
	GetCurrentPrismPositionCT/RT
	GetObjectTemperatureCT
	ClearCommandQueueCT/RT
	GetTriggerBoardInfoCT/RT
	GetOverviewCameraInfoCT/RT
	Get/SetDoubleSystemParamCT/RT
	GetADMInfo2CT/RT
	GetTrackerInfoCT/RT
	GetNivelInfo2CT/RT
	RestoreStartupConditionsCT/RT
	 GoAndMeasureCT/RT

	3.5 C - Language TPI Programming Instructions
	3.5.1 TCP/IP Connection
	3.5.2 Sending Commands
	3.5.3 Initialization Macros
	3.5.4 Excurse: C++ Initialization
	3.5.5 Answers from Tracker Server
	3.5.6 Asynchronous Communication
	3.5.7 DataArrived Notification
	3.5.8 Data arrival 'Traffic Jams'
	3.5.9 PacketHeader Masking
	3.5.10 Command Subtype Switch

	3.6 C Language TPI - Samples
	3.6.1 Sample 3
	Console Application
	Excurse: Windows Application

	4 C++ Interface
	4.1 Class- based TPI Programming
	4.1.1 Preconditions
	4.1.2 Platform Issues
	4.1.3 TCP/IP

	4.2 C++ Language TPI Reference
	4.2.1 CESAPICommand class
	SendPacket
	Command Functions

	4.2.2 CESAPIReceive class
	ReceiveData
	Data Arrival virtual Functions
	General Data Arrival virtual Functions

	4.3 C++ Language TPI Programming Instructions
	4.3.1 Sending Data
	4.3.2 Receiving Data
	4.3.3 Class Design Issues
	4.3.4 Data Structure Wrapper Classes
	4.3.5 CESAPICommand
	Virtual override of SendPacket
	 Class CMyEsCommand
	 Command Methods

	4.3.6 CESAPIReceive
	Virtual override of Answer Functions
	Class CMyESAPIReceive

	4.3.7 Queued and Scattered Data
	Problem Solution
	Cause of Data Loss

	4.3.8 Partial Settings Changes
	4.3.9 Asynchronous Programming Issues
	4.3.10 Working with multiple trackers

	4.4 C++ Language TPI Samples
	4.4.1 Sample 4
	4.4.2 Sample 9
	4.4.3 Sample 12
	4.4.4 Sample 19

	5 COM - Interface
	5.1 High-level TPI Programming
	5.1.1 Drawbacks
	5.1.2 Introduction

	5.2 COM TPI Programming Instructions
	5.2.1 VisualBasic and VBA Applications
	5.2.2 C++ Applications
	5.2.3 Notification Method
	5.2.4 Exceptions and Return Types
	Exception Handling in Visual Basic / VBA
	Exception Handling in C++
	Exception Handling in C#
	Evaluating the Return status

	5.2.5 COM TPI supporting Programming Languages
	5.2.6 Proper Interface Selection
	COM vs. C/C++ Programming
	Interfaces and Notification Methods

	5.2.7 Type- Library
	5.2.8 COM TPI Reference
	5.2.9 Registering COM Objects
	5.2.10 Synchronous versus Asynchronous Interface
	5.2.11 Visual Basic Boolean variable evaluation
	5.2.12 Reading Data Blocks with Visual Basic
	5.2.13 VBA Macro-Language Support
	5.2.14 Continuous measurements and VBA
	5.2.15 Scripting Language Support
	5.2.16 Exception Handling for Non- Microsoft Clients
	5.2.17 Multi- Tracker Applications

	5.3 COM TPI Samples
	5.3.1 Sample 5
	Accessing COM Interfaces
	Interface Variable Declaration
	Connecting / Disconnecting to Server and Initialization Tasks
	Implementing Synchronous Commands
	Implementing Asynchronous Commands
	Catching Events and Messages
	Extended Synchronous Functions

	5.3.2 Sample 7
	Message Notifications
	Source Code Description
	Handling Data Arrival – Continuous Measurements

	5.3.3 Sample 8
	5.3.4 Sample 14
	5.3.5 Sample 15
	5.3.6 Sample 18
	5.3.7 Sample 20

	6 C# - Interface
	6.1 Client Programming with C#
	6.1.1 Introduction
	6.1.2 C# Application Programming
	6.1.3 Sample 16
	6.1.4 Sample 17
	6.1.5 Multi- Tracker C# Applications

	7 Base User Interface (BUI)
	7.1 Client Programming and BUI
	7.1.1 Measurement BUI versus Compensation Applications
	7.1.2 EmScon Basic User Interface (BUI)
	7.1.3 Integration of BUI into applications
	7.1.4 Sample 13

	8 Selected Commands in Detail
	8.1 Special Functions
	8.1.1 Get Reflectors Command
	iTotalReflectors
	IinternalReflectorId / cReflectorName
	List index
	Lookup Table
	Reflector Name – Unicode Format
	Persistence of Reflector Name - ID Mapping

	8.1.2 Still Image Command
	 Related Commands
	Application of GetStillImage – C/C++
	WinSock2 API / MFC CAsyncSocket
	COM TPI within C/C++
	GetStillImage – Synchronous
	GetStillImage – Asynchronous
	COM/VB(A)
	Event handler
	Image Click Position

	8.1.3 Live Image display
	Live Image Control LTVideo2.ocx
	Registering LTVideo2.ocx
	ANSI/Unicode Version
	Development Platforms
	LTVideo2.tlb
	Server Address
	Events/Methods
	Sample 19

	8.1.4 Orient To Gravity Procedure
	Related Command

	8.1.5 Transformation Procedure
	Related Commands

	8.1.6 Automated Intermediate Compensation
	Tracker Geometry
	Intermediate vs. Full Compensation
	Setup
	Area Required
	Procedure
	Minimum Measurements
	Related Commands
	Comments

	8.1.7 Two Face Field-Check
	Periodicity
	Field check two face Measurement
	Client Routine
	Procedure - Preparation
	Measurements on a Straight Line
	Measurements on a Vertical Line
	Measurement ± 90 to the Vertical Line.

	Procedure - Measurement
	Procedure - Calculation
	Example
	Tolerances

	9 Mathematics
	9.1 Point accuracy
	9.1.1 A priori accuracy
	9.1.2 A posteriori accuracy
	9.1.3 Transformation of covariance matrices

	9.2 Orientation and Transformation
	9.2.1 Orientation
	9.2.2 Transformation
	9.2.3 Nominal and actual coordinates
	9.2.4 Orientation parameters
	9.2.5 Transformation parameters
	9.2.6 Input to transformation computation
	Orientation or transformation
	Nominal points
	Actual points
	Parameter constraints

	9.2.7 Output of transformation computation
	Transformation parameters
	Transformed points and residuals
	Statistics
	RMS of residuals
	Maximum deviation
	Weighted residual square sum
	Variance factor
	Redundancy

	9.2.8 Examples
	Standard case with 3 points
	Pure dilation
	Weighting
	3-2-1 Alignment
	Box corner
	Orientation using Nivel measurement

	9.3 T-Probe

	10 Appendices
	10.1 Tracker Trigger Interface [A]
	10.2 Server Error Numbers [B]
	10.3 Tracker / TP Error Numbers [C]
	10.4 T-Cam / T-Probe Error Numbers [D]
	10.5 AIFM Error Numbers [E]

	API_Error_Numbers.pdf
	Appendix B
	EMSCON SERVER ERROR NUMBERS

	TP_Error_Numbers_Merged.pdf
	C. TRACKER ERROR NUMBERS
	C.1 System Errors
	C.2 Communication Errors
	C.3 Parameter Errors
	C.4 Laser Control Processor HW Errors
	C.5 Absolute Distance Meter HW Errors
	 C.6 Hardware Error (additional error numbers to the 9xx group)
	 C.7 Operation Errors
	C.8 Hardware Configuration Errors (user correctable)
	 C.9 Hardware Error (requires service personnel)

	DCS_SW_MSGERR_Modified_ExtractedLast3Pages.pdf
	C. T-Cam / T-Probe ERROR NUMBERS

